Coherent optomechanical interaction known as stimulated Brillouin scattering (SBS) can enable ultrahigh resolution signal processing and narrow-linewidth lasers. SBS has recently been studied extensively in integrated waveguides; however, many implementations rely on complicated fabrication schemes. The absence of SBS in standard and mature fabrication platforms prevents its large-scale circuit integration. Notably, SBS in the emerging silicon nitride (Si 3 N 4 ) photonic integration platform is currently out of reach because of the lack of acoustic guidance. Here, we demonstrate advanced control of backward SBS in multilayer Si 3 N 4 waveguides. By optimizing the separation between two Si 3 N 4 layers, we unlock acoustic waveguiding in this platform, potentially leading up to 15× higher Brillouin gain coefficient than previously possible in Si 3 N 4 waveguides. We use the enhanced SBS gain to demonstrate a high-rejection microwave photonic notch filter. This demonstration opens a path to achieving Brillouin-based photonic circuits in a standard, low-loss Si 3 N 4 platform.
Integrated microwave photonics (MWP) is a rapidly growing field where high frequency microwave signals are processed in the optical domain, bringing key advantages of both microwave photonics and integrated optics technologies including low-losses, reconfigurability, advanced functionality, enhanced performance, and reduced footprint. The MWP spectrum generated from optical modulation carry utmost importance for the functionalities and performance of integrated MWP systems. Thus, precise phase and amplitude shaping of the MWP spectrum can open avenues to advanced functionalities presently unattainable. In this tutorial, we present a new concept of integrated MWP spectral shaping covering the basic principles, theory, and implementations of MWP spectral shaping for modulation transformation, reconfigurable filters, link linearization, and RF waveform generation.
Integrated microwave photonics (MWP) is a fast growing area where high frequency microwave signals are processed in the optical domain, merging key advantages of both microwave photonics and photonic integrated circuits (PICs) technologies including low-loss, reconfigurability, advanced functionality, enhanced stability, and reduced footprint. Plenty of functionalities have been demonstrated in integrated MWP, especially based on spectral shaping technique, where the phase and amplitude of the optical spectrum is precisely tailored by PICs. However, on-chip linearization is lagging behind and has not been investigated deeply. It is crucial and urgent to study on-chip linearization methods, which will lead to advanced integrated MWP systems with large spurious-free dynamic range (SFDR). In this paper, we present two novel techniques for on-chip linearization of microwave photonic links. The first technique is based on line-by-line complex spectral shaping using a series of ring resonators. The second technique relies on spatial separation to achieve parallel spectral shaping in two complementary spatial channels. Both methods are demonstrated in low-loss programmable silicon nitride circuits that can already host a number of advanced functionalities. Our results point to the great potential of integrating advanced functionalities and linearization in the same integrated platform.
We demonstrate for the first time, to the best of our knowledge, an on-chip microwave photonic (MWP) notch filter with high stopband rejection and integrated optical carrier suppression in a phase modulator-based system. The notch filter was achieved through phase modulation to intensity modulation (PM-to-IM) transformation and dual-sideband-processing using a network of three ring resonators (RRs) in a low-loss silicon nitride (Si 3 N 4 ) platform. We show simultaneous PM-to-IM conversion and optical carrier processing for enhancing the filter performance using a single RR. We achieve filtering with a high stopband rejection of >55 dB, an optical carrier suppression up to 3 dB, a radio frequency link gain of 3 dB, a noise figure of 31 dB, and a spurious-free dynamic range of 100 dB • Hz 2/3 . These experiments point to the importance of vectorial spectral shaping of an MWP spectrum for advanced functionalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.