We demonstrate a programmable microwave photonic bandpass filter with a rectangular frequency response and a reconfigurable spectral resolution. We achieved these features through dual-sidebands processing of a phase modulated signal using a network of four optical ring resonators in a low-loss silicon nitride (Si 3 N 4) circuit. Furthermore, we integrate a pair of optical ring resonators in the same circuit to precisely control the amplitude and phase of the optical carrier to enhance the noise performance of the filter. We achieved filtering with a tunable bandwidth from 2 to 7 GHz with optical carrier suppression up to 6 dB, a maximum RF gain of-10 dB, and a minimum noise figure of 27 dB. These experiments are expected to provide a feasible design to approach fully integrated microwave photonic filters with improved link gain and reduced noise figure.
Coherent optomechanical interaction known as stimulated Brillouin scattering (SBS) can enable ultrahigh resolution signal processing and narrow-linewidth lasers. SBS has recently been studied extensively in integrated waveguides; however, many implementations rely on complicated fabrication schemes. The absence of SBS in standard and mature fabrication platforms prevents its large-scale circuit integration. Notably, SBS in the emerging silicon nitride (Si 3 N 4 ) photonic integration platform is currently out of reach because of the lack of acoustic guidance. Here, we demonstrate advanced control of backward SBS in multilayer Si 3 N 4 waveguides. By optimizing the separation between two Si 3 N 4 layers, we unlock acoustic waveguiding in this platform, potentially leading up to 15× higher Brillouin gain coefficient than previously possible in Si 3 N 4 waveguides. We use the enhanced SBS gain to demonstrate a high-rejection microwave photonic notch filter. This demonstration opens a path to achieving Brillouin-based photonic circuits in a standard, low-loss Si 3 N 4 platform.
Integrated microwave photonics (MWP) is a fast growing area where high frequency microwave signals are processed in the optical domain, merging key advantages of both microwave photonics and photonic integrated circuits (PICs) technologies including low-loss, reconfigurability, advanced functionality, enhanced stability, and reduced footprint. Plenty of functionalities have been demonstrated in integrated MWP, especially based on spectral shaping technique, where the phase and amplitude of the optical spectrum is precisely tailored by PICs. However, on-chip linearization is lagging behind and has not been investigated deeply. It is crucial and urgent to study on-chip linearization methods, which will lead to advanced integrated MWP systems with large spurious-free dynamic range (SFDR). In this paper, we present two novel techniques for on-chip linearization of microwave photonic links. The first technique is based on line-by-line complex spectral shaping using a series of ring resonators. The second technique relies on spatial separation to achieve parallel spectral shaping in two complementary spatial channels. Both methods are demonstrated in low-loss programmable silicon nitride circuits that can already host a number of advanced functionalities. Our results point to the great potential of integrating advanced functionalities and linearization in the same integrated platform.
Microwave photonics has adopted a number of important concepts and technologies over the recent pasts, including photonic integration, versatile programmability, and techniques for enhancing key radio frequency performance metrics such as the noise figure and the dynamic range. However, to date, these aspects have not been achieved simultaneously in a single circuit. Here, we report a multi-functional photonic integrated circuit that enables programmable filtering functions with record-high performance. We demonstrate reconfigurable filter functions with record-low noise figure and a RF notch filter with ultra-high dynamic range. We achieve this unique feature using versatile complex spectrum tailoring enabled by an all integrated modulation transformer and a double injection ring resonator as a multi-function optical filtering component. Our work breaks the conventional and fragmented approach of integration, functionality and performance that currently prevents the adoption of integrated MWP systems in real applications.
Microwave photonics (MWP) has adopted a number of important concepts and technologies over the recent pasts, including photonic integration, versatile programmability, and techniques for enhancing key radio frequency performance metrics such as the noise figure and the dynamic range. However, to date, these aspects have not been achieved simultaneously in a single circuit. Here, we demonstrate, for the first time, a multi-functional integrated microwave photonic circuit that enables on-chip programmable filtering functions while achieving record-high of >120 dB.Hz dynamic range and 15 dB of noise figure that are previously unreachable. We achieve this unique feature using versatile complex spectrum tailoring enabled by an all integrated modulation transformer and a double injection ring resonator as a multi-function optical filtering component. This work breaks the conventional and fragmented approach of integration, functionality and performance that currently prevents the adoption of integrated MWP systems in real applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.