The progress in understanding and modifying LiMn2O4-based batteries from various aspects are systematically and comprehensively summarized in this review.
In this paper, tris(trimethylsilyl) phosphite (TMSP) and 1,3‐propanediolcyclic sulfate (PCS) are unprecedentedly prescribed as binary functional additives for treating the poor performances of high‐voltage (5 V‐class) LiNi0.5Mn1.5O4/MCMB (graphitic mesocarbon microbeads) Li‐ion batteries at both room temperature and 50 °C. The high‐voltage LiNi0.5Mn1.5O4/MCMB cell with binary functional additives shows a preponderant discharge capacity retention of 79.5% after 500 cycles at 0.5 C rate at room temperature. By increasing the current intensity from 0.2 to 5 C rate, the discharge capacity retention of the high‐voltage cell with binary functional additives is ≈90%, while the counterpart is only ≈55%. By characterizations, it is rationally demonstrated that the binary functional additives decompose and participate in the modification of solid–electrolyte interface layers (both electrodes), which are more conductive, protective, and resistant to electrolyte oxidative/reductive decompositions (accompanying active‐Li+ consuming parasitic reactions) due to synergistic effects. Specifically, the TMSP additive can stabilize LiPF6 salt and scavenge erosive hydrofluoric acid. More encouragingly, at 50 °C, the high‐voltage cell with binary functional additives holds an ultrahigh discharge capacity retention of 79.5% after 200 cycles at 1 C rate. Moreover, a third designed self‐extinguishing flame‐retardant additive of (ethoxy)‐penta‐fluoro‐cyclo‐triphosphazene (PFPN) is introduced for reducing the flammability of the aforementioned binary functional additives containing electrolyte.
Lithium ion capacitors (LICs), which are hybrid electrochemical energy storage devices combining the intercalation/deintercalation mechanism of a lithium‐ion battery (LIB) electrode with the adsorption/desorption mechanism of an electric double‐layer capacitor (EDLC) electrode, have been extensively investigated during the past few years by virtue of their high energy density, rapid power output, and excellent cycleability. In this review, the LICs are defined as the devices with an electrochemical intercalation electrode and a capacitive electrode in organic electrolytes. Both electrodes can serve as anode or cathode. Throughout the history of LICs, tremendous efforts have been devoted to design suitable electrode materials or develop novel type LIC systems. However, one of the key challenges encountered by LICs is how to balance the sluggish kinetics of intercalation electrodes with high specific capacity against the high power characteristics of capacitive electrode with low specific capacitance. Herein, the developments and the latest advances of LIC in material design strategies and key techniques according to the basic scientific problems are summarized. Perspectives for further development of LICs toward practical applications are also proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.