Atherosclerosis (AS) is a life-threatening vascular disease. RNA N6-methyladenosine (m6A) modification level is dysregulated in multiple pathophysiologic processes including AS. In this text, the roles and molecular mechanisms of m6A writer METTL3 in AS progression were explored in vitro and in vivo. In the present study, cell proliferative, migratory, and tube formation capacities were assessed through CCK-8, Transwell migration, and tube formation assays, respectively. RNA m6A level was examined through a commercial kit. RNA and protein levels of genes were measured through RT-qPCR and western blot assays, respectively. VEGF secretion level was tested through ELISA assay. JAK2 mRNA stability was detected through actinomycin D assay. The relationship of METTL3, IGF2BP1, and JAK2 was investigated through bioinformatics analysis, MeRIP, RIP, RNA pull-down, and luciferase reporter assays. An AS mouse model was established to examine the effect of METTL3 knockdown on AS development in vivo. The angiogenetic activity was examined through chick chorioallantoic membrane assay in vivo. The results showed that METTL3 was highly expressed in ox-LDL-induced dysregulated HUVECs. METTL3 knockdown inhibited cell proliferation, migration, tube formation, and VEGF expression/secretion in ox-LDL-treated HUVECs, hampered AS process in vivo, and prevented in vivo angiogenesis of developing embryos. METTL3 positively regulated JAK2 expression and JAK2/STAT3 pathway in an m6A dependent manner in HUVECs. IGF2BP1 positively regulated JAK2 expression through directly binding to an m6A site within JAK2 mRNA in HUVECs. METTL3 knockdown weakened the interaction of JAK2 and IGF2BP1. METTL3 exerted its functions through JAK2/STAT3 pathway. In conclusion, METTL3 knockdown prevented AS progression by inhibiting JAK2/STAT3 pathway via IGF2BP1.
BackgroundAcute coronary syndrome (ACS) is the most common cause of death in patients with coronary artery disease. The aim of the study was to identify the predictors of both comprehensive clinical risk and severity of coronary lesions by comprehensive use of GRACE and SYNTAX scores in patients with ACS.MethodsClinical data of 225 ACS patients who underwent coronary angiography between 2015 and 2016 were collected. Multiple logistic regression analysis (stepwise) was used to identify the predictors. The predictive ability of predictors and the model were determined using receiver operating characteristics analyses.ResultsMultivariable logistic regression analyses showed that high aspartate aminotransferase (AST) predicted the comprehensive clinical risk with odds ratios (ORs) and 95% confidence intervals (CIs) of 1.011 (1.002–1.021). High total cholesterol (TC) and red blood cell distribution width (RDW) predicted the severity of coronary lesions with ORs and 95% CIs of 1.517 (1.148–2.004) and 1.556 (1.195–2.028), respectively. Low prealbumin predicted both severity of coronary lesions and comprehensive clinical risk of ACS patients with ORs and 95% CIs of 0.743 (0.672–0.821) and 0.836 (0.769–0.909), respectively. The model with a combination of prealbumin and AST had the highest predictive efficacy for comprehensive clinical risk, and the combination of prealbumin, TC, and RDW had the highest predictive efficacy for the severity of coronary lesions. The sensitivity and specificity, and the optimal cut-off values of these four indexes were determined.ConclusionsFour predictors for the comprehensive clinical risk and severity of coronary lesions of ACS were identified, which provided important information for the early diagnosis and appropriate treatment of ACS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.