Breast cancer is the most common cancer and the leading cause of cancer-related deaths in women. Increasing molecular targets have been discovered for breast cancer prognosis and therapy. However, there is still an urgent need to identify new biomarkers. Therefore, we evaluated biomarkers that may aid the diagnosis and treatment of breast cancer. We searched three mRNA microarray datasets (GSE134359, GSE31448 and GSE42568) and identified differentially expressed genes (DEGs) by comparing tumor and non-tumor tissues using GEO2R. Functional and pathway enrichment analyses of the DEGs were performed using the DAVID database. The protein–protein interaction (PPI) network was plotted with STRING and visualized using Cytoscape. Module analysis of the PPI network was done using MCODE. The associations between the identified genes and overall survival (OS) were analyzed using an online Kaplan–Meier tool. The redundancy analysis was conducted by DepMap. Finally, we verified the screened HUB gene at the protein level. A total of 268 DEGs were identified, which were mostly enriched in cell division, cell proliferation, and signal transduction. The PPI network comprised 236 nodes and 2132 edges. Two significant modules were identified in the PPI network. Elevated expression of the genes Discs large-associated protein 5 (DLGAP5), aurora kinase A (AURKA), ubiquitin-conjugating enzyme E2 C (UBE2C), ribonucleotide reductase regulatory subunit M2(RRM2), kinesin family member 23(KIF23), kinesin family member 11(KIF11), non-structural maintenance of chromosome condensin 1 complex subunit G (NCAPG), ZW10 interactor (ZWINT), and denticleless E3 ubiquitin protein ligase homolog(DTL) are associated with poor OS of breast cancer patients. The enriched functions and pathways included cell cycle, oocyte meiosis and the p53 signaling pathway. The DEGs in breast cancer have the potential to become useful targets for the diagnosis and treatment of breast cancer.
Liver tumour-initiating cells (TICs) contribute to tumour initiation, metastasis, progression and drug resistance. Metabolic reprogramming is a cancer hallmark and plays vital roles in liver tumorigenesis. However, the role of metabolic reprogramming in TICs remains poorly explored. Here, we identify a mitochondria-encoded circular RNA, termed mcPGK1 (mitochondrial circRNA for translocating phosphoglycerate kinase 1), which is highly expressed in liver TICs. mcPGK1 knockdown impairs liver TIC self-renewal, whereas its overexpression drives liver TIC self-renewal. Mechanistically, mcPGK1 regulates metabolic reprogramming by inhibiting mitochondrial oxidative phosphorylation (OXPHOS) and promoting glycolysis. This alters the intracellular levels of α-ketoglutarate and lactate, which are modulators in Wnt/β-catenin activation and liver TIC self-renewal. In addition, mcPGK1 promotes PGK1 mitochondrial import via TOM40 interactions, reprogramming metabolism from oxidative phosphorylation to glycolysis through PGK1-PDK1-PDH axis. Our work suggests that mitochondria-encoded circRNAs represent an additional regulatory layer controlling mitochondrial function, metabolic reprogramming and liver TIC self-renewal.
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths across the world. Due to the lack of reliable markers for early HCC detection, most HCC patients are diagnosed in middle/late stages. Liver cancer stem cells (CSCs), which are drivers of liver tumorigenesis, usually emerge in the early HCC stage and are also termed as liver tumor initiation cells (TIC). Liver CSCs contribute to initiation, propagation, and metastasis of HCC and also play a key role in tumor therapy. Taking advantage of online-available data sets, bioinformatic analyses, and experimental confirmation, here we have screened out PRC1 and RACGAP1 as reliable markers for early HCC detection. PRC1 or RACGAP1 knockdown dramatically inhibited the proliferation, migration, and invasion capacities of HCC cells, conferring PRC1 and RACGAP1 as predominant modulators for HCC propagation and metastasis. Moreover, the sphere formation capacity of HCC cells was impaired after PRC1 knockdown, revealing the function of PRC1 as a modulator for liver CSC self-renewal. Furthermore, the inhibitor of PRC1 had same phenotypes as PRC1 knockdown in HCC cells. Altogether, PRC1 and RACGAP1 are identified both as prognosis markers for early HCC detection and therapeutic targets for liver cancer and liver CSCs, adding additional layers for the early prognosis and therapy of HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.