Idiopathic nephrotic syndrome (INS) is a disease involving injury to podocytes in the glomerular filtration barrier, and its specific causes have not been elucidated. Transfer RNA-derived fragments (tRFs), products of precise tRNA cleavage, have been indicated to play critical roles in various diseases. Currently, there is no relevant research on the role of tRFs in INS. This study intends to explore the changes in and importance of tRFs during podocyte injury in vitro and to further analyze the potential mechanism of INS. Differentially expressed tRFs in the adriamycin-treated group were identified by high-throughput sequencing and further verified by quantitative RT-PCR. In total, 203 tRFs with significant differential expression were identified, namely, 102 upregulated tRFs and 101 downregulated tRFs (q<0.05, ∣log2FC∣≥2). In particular, AS-tDR-008924, AS-tDR-011690, tDR-003634, AS-tDR-013354, tDR-011031, AS-tDR-001008, and AS-tDR-007319 were predicted to be involved in podocyte injury by targeting the Gpr, Wnt, Rac1, and other genes. Furthermore, gene ontology analysis showed that these differential tRFs were strongly associated with podocyte injury processes such as protein binding, cell adhesion, synapses, the actin cytoskeleton, and insulin-activate receptor activity. KEGG pathway analysis predicted that they participated in the PI3K-Akt signaling pathway, Wnt signaling pathway, and Ras signaling pathway. It was reported that these pathways contribute to podocyte injury. In conclusion, our study revealed that changes in the expression levels of tRFs might be involved in INS. Seven of the differentially expressed tRFs might play important roles in the process of podocyte injury and are worthy of further study.
Hyperproliferation of mesangial cells (MCs) is the central pathological feature observed in certain human renal diseases. Furthermore, the long non-coding RNA uc.412 is regulated by transforming growth factor β1 in mesangial cells in vitro. The present study aimed to investigate whether uc.412 serves a role in renal fibrosis and whether it may be considered as a therapeutic target in mesangial proliferative kidney diseases. The results demonstrated that uc.412 overexpression significantly increased MC proliferation. The transcriptional profile of MCs overexpressing uc.412 was assessed by RNA sequencing. A total of 462 up- and 843 downregulated genes were identified (|fold change| ≥1.5), and reverse transcription-quantitative PCR was used to determine the expression of these differentially expressed genes (DEGs). Subsequently, the potential function of these DEGs was determined by bioinformatics analyses. The results indicated that these DEGs were involved in numerous signaling pathways associated with MC proliferation. The downstream association between up- and downregulated genes was constructed via the STRING database. The protein-protein interaction network indicated that serpin family E member 1 and matrix metallopeptidase 3 may be hub proteins. In conclusion, the present study provided novel insight into the role of uc.412 in MC proliferation, which may aid in the development of novel treatment for mesangial proliferative kidney diseases.
Background Angiotensin II (Ang II) contributes to the progression of glomerulosclerosis, mainly by inducing podocyte injury. Convincing evidence indicates that the mTOR inhibitor rapamycin could play a fundamental role in protection against podocyte injury. Nestin, a major cytoskeletal protein, is stably expressed in podocytes and correlates with podocyte damage. The purpose of this study was to investigate the effect of rapamycin on podocyte injury induced by Ang II and to clarify the role and mechanism of nestin in the protective effect of rapamycin of podocyte injury. Methods and results We established an Ang II perfusion animal model, and the effects of rapamycin treatment on podocytes were investigated in vivo. In vitro, podocytes were stimulated with Ang II and rapamycin to observe podocyte injury, and nestin-siRNA was transfected to investigate the underlying mechanisms. We observed that Ang II induced podocyte injury both in vivo and in vitro, whereas rapamycin treatment relieved Ang II-induced podocyte injury. We further found that nestin co-localized with p-mTOR in glomeruli, and the protective effect of rapamycin was reduced by nestin-siRNA in podocytes. Moreover, co-IP indicated the interaction between nestin and p-mTOR, and nestin could affect podocyte injury via the mTOR/P70S6K signaling pathway. Conclusion We demonstrated that rapamycin attenuated podocyte apoptosis via upregulation of nestin expression through the mTOR/P70S6K signaling pathway in an Ang II-induced podocyte injury.
Podocyte apoptosis is a key risk factor for the progression of kidney diseases. MicroRNA (miR)-199b-5p has been shown to be involved in cell apoptosis. However, the molecular mechanisms of miR-199b-5p in podocyte apoptosis remain uncertain. Thus, the present study aimed to investigate whether miR-199b-5p participates in the regulation of podocyte apoptosis and to elucidate the involved mechanisms of this process. A podocyte apoptosis model was constructed using adriamycin (ADR) in vitro . miR-199b-5p mimic and inhibitor were transfected in podocytes to change the expression level of miR-199b-5p. RNA expression was examined by reverse transcription-quantitative PCR. Western blotting was used to measure protein expression. Apoptosis was monitored via flow cytometry and detection of apoptosis-associated proteins. The results from the present study demonstrated that miR-199b-5p was upregulated and that regulator of G-protein signaling 10 (RGS10) was downregulated in ADR-stimulated podocytes. Overexpression of miR-199b-5p could inhibit RGS10 expression and stimulate podocyte apoptosis, whereas miR-199b-5p knockdown restored the levels of RGS10 and ameliorated podocyte apoptosis in ADR-induced podocytes. Furthermore, the effects of miR-199b-5p overexpression could be significantly reversed by RGS10 overexpression. In addition, podocyte transfection of miR-199b-5p activated the AKT/mechanistic target of rapamycin (mTOR) signaling, which was blocked following RGS10 overexpression. Taken together, the present study demonstrated that miR-199b-5p upregulation could promote podocyte apoptosis by inhibiting the expression of RGS10 through the activation of AKT/mTOR signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.