As an emerging applied material, graphene has shown tremendous application potential in many fields, including biomedicine. However, the biological behavior of these nanosheets, especially their interactions with cells, is not well understood. Here, we report our findings about the cell surface adhesion, subcellular locations, and size-dependent uptake mechanisms of protein-coated graphene oxide nanosheets (PCGO). Small nanosheets enter cells mainly through clathrin-mediated endocytosis, and the increase of graphene size enhances phagocytotic uptake of the nanosheets. These findings will facilitate biomedical and toxicologic studies of graphenes and provide fundamental understanding of interactions at the interface of two-dimensional nanostructures and biological systems.
The outbreak of the pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) calls for an urgent unmet need for developing a facial and cost-effective detection method. The requirement of well-trained personnel and sophisticated instrument of current primary mean (reverse transcription polymerase chain reaction, RT-PCR) may hinder the practical application worldwide. In this regard, a reverse transcription recombinase polymerase amplification (RT-RPA) coupled with CRISPR-Cas12a colorimetric assay is proposed for the SARS-CoV-2 detection. The methodology we have described herein utilizes DNA-modified gold nanoparticles (AuNPs) as a universal colorimetric readout and can specifically target ORF1ab and N regions of the SARS-CoV-2 genome. After the virus genome is amplified through RT-RPA, the resulting abundant dsDNA will bind and activate Cas12a. Under trans-cleavage degradation, the capped DNA substrate will be hydrolyzed gradually from AuNPs, demonstrating a change in the surface plasmon resonance (SPR), which can be facially monitored by UV–vis absorbance spectroscopy and naked eye observation. The high amplification efficiency from RT-RPA and Cas12a trans-cleavage process bring the sensitivity of our method to 1 copy of viral genome sequence per test. Notably, under the dual variations inspecting from the isothermal amplification and Cas12a activation process, the false positive events from other beta coronavirus members can be effectively avoided and thus significantly improve the specificity. Furthermore, the reliability of this colorimetric assay is validated by standard clinical samples from the hospital laboratory department. Through integration of the inherently high sensitivity and specificity from an RPA-coupled Cas12a system with the intrinsic simplicity of AuNP-based colorimetric assay, our method increases the practical testing availability of SARS-CoV-2.
Hydroxyphenol compounds are often used as reductants in controlling the growth of nanoparticles. Herein, dopamine was used as an effective reductant in seed-mediated synthesis of gold nanorods (GNRs). The as-prepared GNRs (83 × 16 nm) were monodisperse and had a high degree of purity. The conversion ratio from gold ions to GNRs was around 80%. In addition, dopamine worked as an additive. At a very low concentration of hexadecyltrimethylammonium bromide (CTAB; 0.025 M), thinner and shorter GNRs (60 × 9 nm) were successfully prepared. By regulating the concentration of silver ions, CTAB, seeds, and reductant, GNRs with longitudinal surface plasmon resonance (LSPR) peaks ranging from 680 to 1030 nm were synthesized. The growth process was tracked using UV-vis-NIR spectroscopy, and it was found that a slow growth rate was beneficial to the formation of GNRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.