Traditional correlation analysis is analyzed separately in the time domain or the frequency domain, which cannot reflect the time-varying and frequency-varying characteristics of non-stationary signals. Therefore, a time–frequency (TF) correlation analysis method of time series decomposition (TD) derived from synchrosqueezed S transform (SSST) is proposed in this paper. First, the two-dimensional time–frequency matrices of the signals is obtained by synchrosqueezed S transform. Second, time series decomposition is used to transform the matrices into the two-dimensional time–time matrices. Third, a correlation analysis of the local time characteristics is carried out, thus attaining the time–frequency correlation between the signals. Finally, the proposed method is validated by stationary and non-stationary signals simulation and is compared with the traditional correlation analysis method. The simulation results show that the traditional method can obtain the overall correlation between the signals but cannot reflect the local time and frequency correlations. In particular, the correlations of non-stationary signals cannot be accurately identified. The proposed method not only obtains the overall correlations between the signals, but can also accurately identifies the correlations between non-stationary signals, thus showing the time-varying and frequency-varying correlation characteristics. The proposed method is applied to the acoustic signal processing of an engine–gearbox test bench. The results show that the proposed method can effectively identify the time–frequency correlation between the signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.