Fast and on-site detection is important for an effective antigene-doping strategy. However, the current gene doping (GD) evaluation methods require sophisticated instruments and laborious procedures, limiting their field applications. This study proposes a CRISPR/Cas12a-based detection platform (termed CasGDP) combining CRISPR/Cas12a and multiplexed Recombinase Polymerase Amplification (RPA) for rapid evaluation of GD. CasGDP showed high specificity for identifying the putative target genes such as EPO, IGF-1, and GH-1. By using fluorescence as the readout, the method achieved a limit-of-detection of 0.1 nM and 1 aM for unamplified and amplified target plasmids, respectively. Additionally, an in vitro GD cell model was successfully established with the human EPO gene (hEPO). The results indicated that the hEPO gene transfection promoted the hEPO protein expression. Furthermore, trace amounts of EPO transgene spiked in human serum were efficiently measured by CasGDP with fluorescence-and lateral flow device (LFD)-based readouts in 40 min. Finally, we designed a multiplexed microfluidic device and realized simultaneous detection of the three transgenes via LFD embedded in the device. To our knowledge, this is the first work that combines the CRISPR-based system and multiplexed RPA for GD detection. We anticipate CasGDP to be widely used as a rapid, sensitive, and robust tool for GD evaluation.
With the maturation of microfluidic technologies, microchip electrophoresis has been widely employed for amino acid analysis owing to its advantages of low sample consumption, reduced analysis time, high throughput, and potential for integration and automation. In this article, we review the recent progress in amino acid analysis using microchip electrophoresis during the period from 2007 to 2012. Innovations in microchip materials, surface modification, sample introduction, microchip electrophoresis, and detection methods are documented, as well as nascent applications of amino acid analysis in single-cell analysis, microdialysis sampling, food analysis, and extraterrestrial exploration. Without doubt, more applications of microchip electrophoresis in amino acid analysis may be expected soon.
The adulteration of olive oils based on advanced sensors has attracted high interest owing to its health benefits in the prevention and treatment of certain pathologies. Concerning its health and commercial aspects, lower grade oil blending and other illegal additives in virgin olive oil can negatively affect the nutritive value of olive oil. This review focuses on the advances in the sensing and identification of adulteration of olive oil. Optical sensing, chromatography (usually coupled with mass spectrometry), and nuclear magnetic resonance are discussed in detail. Other methods including a DNA-based method, dielectric spectroscopy, differential scanning calorimetry, thermogravimetric analysis and electronic nose among others, are overviewed as well.
Atomically precise noble metal nanoclusters with ultrasmall physical sizes in the subnanometer range have emerged as a new class of probing fluorophores and have attracted considerable research interest because of their intrinsic physical, chemical, optical, biological, and electrical properties, such as stability, biocompatibility, and molecule-like photoluminescence. In comparison with traditional fluorophores such as organic dyes and quantum dots, noble metal nanoclusters have significant advantages, including low toxicity toward the environment and biological tissues, high stability when exposed to irradiation, and small size, that make them more suitable for biological sensing or biological labeling applications. Several reviews have summarized the fabrication of noble metal nanoclusters, including gold, silver, copper, and bimetallic nanoclusters. However, these reviews focused either on various facile preparation methods or multidisciplinary application areas. Here, we focus on the application of noble metal nanoclusters as optical sensing materials for toxic metal ions, including new synthetic approaches and discussion of the detection mechanism. We briefly summarize the development of metal cation monitoring technology that uses ultrasmall nanoclusters as the sensing probes. We also provide a fresh opinion on research expectations in the field of inorganic nanoscience and nanotechnology Finally, perspectives for future research hot topics are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.