We studied the pharmacological actions of combined histamine H1/H3 receptor blockade on the increase in nasal airway resistance (NAR) and decrease in nasal cavity volume produced by nasal exposure to compound 48/80, a mast cell degranulator. In the anesthetized cat compound 48/80 (1%) produced a maximum increase in NAR of 9.1 +/- 0.7 cmH20.L/minute. The increase in NAR in animals pretreated with a combination of the H1 antagonist, chlorpheniramine (CTM; 0.8 mg/kg i.v.) and increasing doses of the H3 antagonist, thioperamide (THIO; 1.0, 3.0, and 10.0 mg/kg i.v.) were 6.1 +/- 2.1, 4.2 +/- 1.0 and 2.2 +/- 0.7 cmH20.L/minute, respectively. A second H3 antagonist, clobenpropit (CLOB; 0.03, 0.3, and 1.0 mg/kg i.v.) combined with CTM (0.8 mg/kg i.v.) also inhibited the nasal effects of compound 48/80. When the nonsedating H1 antihistamine, loratadine (3.0 mg/kg i.v.), was substituted for CTM, it also reduced nasal congestion when given in combination with THIO (10 mg/kg i.v.). In contrast, treatment with CTM (1.0 mg/kg i.v.) and the H2 antagonist, ranitidine (RAN; 1.0 mg/kg i.v.) were without activity. Loratadine, CTM, CLOB, RAN, or THIO administered alone were inactive. The alpha-adrenergic agonist, phenylpropanolamine (PPA; 1.0 mg/kg i.v.) demonstrated decongestant effects, but in contrast to H1/H3 blockade, PPA produced a significant hypertensive effect. Using acoustic rhinometry (AcR) we found that combined i.v. CTM (1.0 mg/kg) and THIO (10 mg/kg) and combined oral CTM (10 mg/kg) and THIO (30 mg/kg) blocked the decrease in nasal cavity volume produced by intranasal compound 48/80 (1%, 50 microL). We conclude that combined H1/H3 histamine receptor blockade enhances the efficacy of an H1 antagonist by conferring decongestant activity to the H1 antihistamine. We propose that the decongestant activity of combined H1/H3 blockade may provide a novel approach for the treatment of allergic nasal congestion without the hypertensive liability of current therapies.
This is the first report describing the use and pharmacological characterization of nasal patency by both pressure rhinometry and acoustic rhinometry (AcR) in an experimental cat model of nasal congestion. In pressure rhinometry studies, aerosolized compound 48/80 (0.1-3.0%), a mast cell liberator, increased nasal airway resistance (NAR) 1.2 +/- 0.6, 5.8 +/- 0.5, 8.6 +/- 1.1 and 7.9 +/- 1.5 cmH2O.L/minute, respectively. Increases in NAR produced by compound 48/80 were associated with a 395% increase in histamine concentration found in the nasal lavage fluid. Pretreatment with the alpha-adrenoreceptor agonist, phenylpropanolamine (PPA; 0.1-3.0 mg/kg, i.v.), and the NO synthetase inhibitor, NG-nitro-L-arginine (L-NAME; 10 mg/kg, i.v.) attenuated the increases in NAR produced by compound 48/80. The histamine H1 antagonist chlorpheniramine (1.0 mg/kg, i.v.) and the H2 antagonist, ranitidine (1.0 mg/kg, i.v.) had no decongestant activity. Also without decongestant activity were the muscarinic antagonist atropine, the cyclooxygenase inhibitor indomethacin, and the 5-HT blocker methysergide. Aerosolized histamine (0.1-1.0%) also produced a dose dependent increase in NAR. In studies using acoustic rhinometry (AcR), intranasal application of compound 48/80 (0.1-1.0%) elicited pronounced decreases in nasal cavity volumes and minimum cross-sectional area (Amin). Pretreatment with PPA (3 mg/kg, i.v. or 10 mg/kg, p.o.) attenuated the decreases in nasal volume and Amin. The effects of topical intranasal histamine (0.1-1.0%) on nasal geometry were similar to compound 48/80. We conclude that the cat is a useful model for evaluating the pharmacological actions of potential nasal decongestants. Furthermore, we also conclude that AcR is a useful method for noninvasive assessment of nasal patency in a preclinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.