Developmental Genetic Programming (DGP) algorithms have explicitly required the search space for a problem to be divided into genotypes and corresponding phenotypes. The two search spaces are often connected with a genotypephenotype mapping (GPM) intended to model the biological genetic code, where current implementations of this concept involve evolution of the mappings along with evolution of the genotype solutions. This work presents the Probabilistic Adaptive Mapping DGP (PAM DGP), a new developmental implementation that involves research contributions in the areas of GPMs and coevolution. The algorithm component of PAM DGP is demonstrated to overcome coevolutionary performance problems that are identified and empirically benchmarked against the latest competing algorithm that adapts similar GPMs. An adaptive redundant mapping encoding is then incorporated into PAM DGP for further performance enhancement. PAM DGP with two mapping types are compared to the competing Adaptive Mapping algorithm and Traditional GP in two medical classification domains, where PAM DGP with redundant encodings is found to provide superior fitness performance over the other algorithms through it's ability to explicitly decrease the size of the function set during evolution.
The tagging problem in natural language processing is to find a way to label every word in a text as a particular part of speech, e.g., proper noun. An effective way of solving this problem with high accuracy is the transformation-based or "Brill" tagger. In Brill's system, a number of transformation templates are specified a priori that are instantiated and ranked during a greedy searchbased algorithm. This paper describes a variant of Brill's implementation that instead uses a genetic algorithm to generate the instantiated rules and provide an adaptive ranking. Based on tagging accuracy, the new system provides a better hybrid evolutionary computation solution to the part-of-speech (POS) problem than the previous attempt. Although not able to make up for the use of a priori knowledge utilized by Brill, the method appears to point the way for an improved solution to the tagging problem.
Abstract.A developmental co-evolutionary genetic programming approach (PAM DGP) is compared to a standard linear genetic programming (LGP) implementation for trading of stocks across market sectors. Both implementations were found to be impressively robust to market fluctuations while reacting efficiently to opportunities for profit, where PAM DGP proved slightly more reactive to market changes than LGP. PAM DGP outperformed, or was competitive with, LGP for all stocks tested. Both implementations had very impressive accuracy in choosing both profitable buy trades and sells that prevented losses, where this occurred in the context of moderately active trading for all stocks. The algorithms also appropriately maintained maximal investment in order to profit from sustained market upswings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.