This article reports on a fiber‐based ratiometric optical pH sensor for use in real‐time and continuous in vivo pH monitoring in human tissue. Stable hybrid sol–gel‐based pH sensing material is deposited on a highly flexible plastic optical fiber tip and integrated with excitation and detection electronics. The sensor is extensively tested in a laboratory environment before it is applied in vivo in a human model. The pH sensor performance in the laboratory environment outperforms the state‐of‐the‐art reported in the current literature. It exhibits the highest sensitivity in the physiological pH range, resolution of 0.0013 pH units, excellent sensor to sensor reproducibility, long‐term stability, short response time of <2 min, and drift of 0.003 pH units per 22 h. The sensor also exhibits promising performance in in vitro whole blood samples. In addition, human evaluations conducted under this project demonstrate successful short‐term deployment of this sensor in vivo.
Abstract. Three surveys conducted over a 6 year period revealed that medical device software organisations have difficulties in the area of requirements management, namely accommodating changes in requirements. Medical device software is traditionally developed in accordance with a plan driven software development lifecycle (SDLC). These SDLCs are rigid and inflexible to changes once the requirements management stage has been completed. Agile methods are gaining momentum in non-regulated industries but as of yet, the adoption of these methods in regulated industries such as the medical device software domain remains low. This study presents an implementation of agile methods within a medical device software development organisation based in Ireland. This implementation involved integrating agile practices with a traditional plan driven SDLC. Upon completing this implementation within a medical device software development project, the organisation identified cost savings and a reduction in the rework required when introducing a change in requirements.
Agile development techniques are becoming increasingly popular in the generic software development industry as they appear to offer solutions to the problems associated with following a plan-driven Software Development Life Cycle (SDLC). However, agile methods may not be suited to all industries or organisations. For agile methods to succeed, an organisation must be structured in a way to accommodate agile methods. Medical device software development organisations are bound by regulatory constraints and as a result face challenges when they try to completely follow an agile methodology, but can reap significant benefits by combining both agile and plan-driven SDLC such as the Waterfall or V-Model. This paper presents an analysis of a medical device software development organisation based in Ireland, which is considering moving to agile software development techniques. This includes the performing of a Home-Ground Analysis to determine how agile or disciplined 1 the organisation currently is. Upon completion of the Home-Ground Analysis recommendations were made to the organisation as to how they could tailor their existing structure to better accommodate agile development techniques. These recommendations include adopting agile practices such as self-organising teams to promote a culture of "chaos" within the organisation.
Abstract-Agile methods are gaining momentum amongst the developers of non-safety critical software. They offer the ability to improve development time, increase quality and reduce development costs. Despite this, the rate of adoption of agile methods within safety critical domains remains low. On face value agile methods appear to be contradictory to regulatory requirements. However while they may appear contradictory, they align on key values such as the development of the highest quality software. To demonstrate that agile methods could in fact be adopted when developing regulatory compliant software they were implemented on a medical device software development project. This implementation showed that not only can agile methods be successfully followed, but it also revealed that benefits were acquired. For example, the medical device software development project was completed 7% faster when following agile methods, when compared to if it had been completed in accordance with a plan-driven approach. While this implementation is confined to a single project, within a single organization it does strengthen the belief that adopting agile methods within regulated domains can reap the same benefits as those acquired in non-safety critical domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.