Filamentous fungi can synthesize a variety of nanoparticles (NPs), a process referred to as mycosynthesis that requires little energy input, do not require the use of harsh chemicals, occurs at near neutral pH, and do not produce toxic byproducts. While NP synthesis involves reactions between metal ions and exudates produced by the fungi, the chemical and biochemical parameters underlying this process remain poorly understood. Here, the role of fungal species and precursor salt on the mycosynthesis of zinc oxide (ZnO) NPs is investigated. This data demonstrates that all five fungal species tested are able to produce ZnO structures that can be morphologically classified into i) well‐defined NPs, ii) coalesced/dissolving NPs, and iii) micron‐sized square plates. Further, species‐dependent preferences for these morphologies are observed, suggesting potential differences in the profile or concentration of the biochemical constituents in their individual exudates. This data also demonstrates that mycosynthesis of ZnO NPs is independent of the anion species, with nitrate, sulfate, and chloride showing no effect on NP production. These results enhance the understanding of factors controlling the mycosynthesis of ceramic NPs, supporting future studies that can enable control over the physical and chemical properties of NPs formed through this “green” synthesis method.
Melanin-containing fungi (black molds) have the capacity to thrive under extreme environmental conditions such as the elevated radiation levels inside the former Chernobyl reactors. These fungi have been hypothesized to grow toward and use gamma radiation as an energy source, but the literature does not clearly address which energies of the electromagnetic spectrum, if any, positively affect fungal growth. The goal of this work was to characterize the response of non-melanized and melanized fungi to two distinct electromagnetic wavelengths, i.e., ultraviolet (UV) and gamma ray, keeping absorption and other potentially confounding variables constant. Exposure to UV or gamma radiation induced significant changes in fungi pigmentation, but not growth rate of Cladosporium cladosporioides and Paecilomyces variotii. Specifically, increased pigmentation of both fungi was observed in samples exposed to UV, while decreased pigmentation was observed for gamma-irradiated samples. These results provide new insights into the role of electromagnetic energies on growth of fungi and provide an impetus to examine additional energies and types of radiation to develop a fundamental understanding of this phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.