Recently there have been numerous proposals to create Majorana zero modes in solid state heterojunctions, superconducting wires and optical lattices. Putatively the information stored in qubits constructed from these modes is protected from various forms of decoherence. Here we show that this is not the case. We present a generic method to study the effect of external perturbations on these modes. We focus on the case where there are no interactions between different Majorana modes either directly or through intermediary fermions. To quantify the rate of loss of the information stored in the Majorana modes we study the two-time correlators for qubits built from them. We analyze a generic gapped fermionic environment (bath) interacting via tunneling with different components of the qubit (different Majorana modes). We find that static (quadratic) perturbations are not harmful, and just lead to a depletion of the information stored that saturates in the long-time limit. On the other hand we find markedly different results for dynamic systems, with no coherence surviving in the long time limit. In particular we find that dephasing and energy fluctuations of the modes in the fermionic bath have adverse effects on the Majorana memories.
Magnetic resonance imaging can characterize and discriminate among tissues using their diverse physical and biochemical properties. Unfortunately, submicrometer screening of biological specimens is presently not possible, mainly due to lack of detection sensitivity. Here we analyze the use of a nitrogen-vacancy center in diamond as a magnetic sensor for nanoscale nuclear spin imaging and spectroscopy. We examine the ability of such a sensor to probe the fluctuations of the "classical" dipolar field due to a large number of neighboring nuclear spins in a densely protonated sample. We identify detection protocols that appropriately take into account the quantum character of the sensor and find a signal-to-noise ratio compatible with realistic experimental parameters. Through various example calculations we illustrate different kinds of image contrast. In particular, we show how to exploit the comparatively long nuclear spin correlation times to reconstruct a local, high-resolution sample spectrum.
We describe a method to enhance the sensitivity of precision measurements that takes advantage of the environment of a quantum sensor to amplify the response of the sensor to weak external perturbations. An individual qubit is used to sense the dynamics of surrounding ancillary qubits, which are in turn affected by the external field to be measured. The resulting sensitivity enhancement is determined by the number of ancillas that are coupled strongly to the sensor qubit; it does not depend on the exact values of the coupling strengths and is resilient to many forms of decoherence. The method achieves nearly Heisenberg-limited precision measurement, using a novel class of entangled states. We discuss specific applications to improve clock sensitivity using trapped ions and magnetic sensing based on electronic spins in diamond.
We consider 2D interacting electrons at a monkey saddle with dispersion ∝ p 3x − 3pxp 2 y . Such a dispersion naturally arises at the multicritical Lifshitz point when three van Hove saddles merge in an elliptical umbilic elementary catastrophe, which we show can be realized in biased bilayer graphene. A multicritical Lifshitz point of this kind can be identified by its signature Landau level behavior Em ∝ (Bm) 3 2 and related oscillations in thermodynamic and transport properties, such as de Haas-van Alphen and Shubnikov-de Haas oscillations, whose period triples as the system crosses the singularity. We show, in the case of a single monkey saddle, that the non-interacting electron fixed point is unstable to interactions under the renormalization group flow, developing either a superconducting instability or non-Fermi liquid features. Biased bilayer graphene, where there are two non-nested monkey saddles at the K and K ′ points, exhibits an interplay of competing manybody instabilities, namely s-wave superconductivity, ferromagnetism, and spin-and charge-density wave. PACS numbers:arXiv:1606.04950v1 [cond-mat.str-el]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.