Abstract. Isoprene fluxes were estimated using eight different measurement techniques at a forested site near Oak Ridge, Tennessee, during July and August 1992. Fluxes from individual leaves and entire branches were estimated with four enclosure systems, including one system that controls leaf temperature and light. Variations in isoprene emission with changes in light, temperature, and canopy depth were investigated with leaf enclosure measurements. Representative emission rates for the dominant vegetation in the region were determined with branch enclosure •neasurements. Species from six tree genera had negligible lsoprene emissions, while significant emissions were observed for Quercus, Liquidambar, and Nyssa species. Abovecanopy isoprene fluxes were estimated with surface layer gradients and relaxed eddy accumulation measurements from a 44-m tower. Midday net emission fluxes from the canopy were typically 3 to 5 mg C m-2 h-l, although net isoprene deposition fluxes of-0.2 to -2 mg C m-2 h-1 were occasionally observed in early morning and late afternoon. Above-canopy CO2 fluxes estimated by eddy correlation using either an open path sensor or a closed path sensor agreed within +5%. Relaxed eddy accumulation estimates of CO2 fluxes were within 15% of the eddy correlation estimates. Daytime isoprene mixing ratios in the mixed layer were investigated with a tethered balloon sampling system and ranged from 0.2 to 5 ppbv, averaging 0.8 ppbv. The isoprene mixing ratios in the mixed layer above the forested landscape were used to estimate isoprene fluxes of 2 to 8 mg C m-2 h-1 with mixed layer gradient and mixed layer mass balance techniques. Total foliar density and dominant tree species composition for an approximately 8100 km2 region were estimated using high-resolution (30 m) satellite data with classifications supervised by ground measurements. A biogenic isoprene emission model used to compare flux measurements, ranging from leaf scale (10 cm2) to landscape scale (102 km2), indicated agreement to within +_25%, the uncertainty associated with these measurement techniques. Existing biogenic emission models use isoprene emission rate capacities that range from 14.7 to 70 [tg C g-1 h-1 (leaf temperature of 30øC and photosynthetically active radiation of 1000 gmol m-2 for oak foliage. An isoprene emission rate capacity of 100 gg C g-1 h-1 for oaks in this region is more realistic and is recommended, based on these measurements.
[1] A second-generation relaxed eddy accumulation system was built and tested with the capability to measure vertical biogenic volatile organic compound (VOC) fluxes at levels as low as 10 mg C m À2 hr À1 . The system features a continuous, integrated gas-phase ozone removal procedure to allow for the measurement of highly reactive species such as b-caryophyllene and polar terpenoids such as linalool. A two-component internal standard continuously added to the accumulators was used to correct for switching-induced volumetric errors and as a check on VOC losses exceeding accumulator tube adsorption limits. In addition, the internal standards were used to demonstrate that accumulators quickly return to target flow rates at segregation valve switching frequencies up to at least 0.8 Hz. The system was able to measure daytime hourly fluxes of individual biogenic VOC including oxygenated terpenoids, monoterpenes, and sesquiterpenes.Citation: Arnts, R. R., F. L. Mowry, and G. A. Hampton (2013), A high-frequency response relaxed eddy accumulation flux measurement system for sampling short-lived biogenic volatile organic compounds,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.