A laboratory study is conducted to measure Darcy-Weisbach roughness coefficients for selected gravel and cobble materials. Varying rates of flow are introduced into a flume in which a given size class of gravel or cobble material is securely attached. Roughness coefficients are calculated from measurements of discharge rate and flow velocity. The laboratory data are used to develop regression equations for relating roughness coefficients to surface cover and Reynolds number. Accurate prediction of roughness coefficients for gravel and cobble surfaces will improve our ability to understand and properly model upland flow hydraulics.
Analysis of surface runoff on upland areas requires identification of roughness coefficients. A laboratory study is conducted to measure Darcy-Weisbach and Manning roughness coefficients for corn, cotton, peanut, pine needles, sorghum, soybeans, sunflower, and wheat residue. Varying rates of flow are introduced into a flume in which selected amounts of residue are securely attached. Roughness coefficients are calculated from measurements of discharge rate and flow velocity. The laboratory data are used to derive regression equations for relating roughness coefficients to Reynolds number and either percent residue cover or residue rate. Separate equations are developed for Reynolds number values from 500 to 20,000, and from 20,000 to 110,000. Generalized equations are presented for estimating roughness coefficients for other residue materials not used in this investigation. Accurate prediction of roughness coefficients for residue materials will improve our ability to understand and properly model upland flow hydraulics.
Hydraulic conditions required to initiate movement of unanchored residue materials are identified in the present study. Selected amounts of corn, cotton, pine needles, sorghum, soybean, sunflower, and wheat residue are placed in a flume on a sand surface, and flow is then introduced at the top of the flume in progressive increments. The discharge rate and flow velocity necessary to cause residue movement are determined. The ratio of critical flow depth to residue diameter, critical Reynolds number, critical shear stress, dimensionless shear stress, and boundary Reynolds number are calculated from hydraulic measurements. Regression equations are developed to relate dimensionless shear stress to boundary Reynolds number and residue diameter. Boundary Reynolds number, in turn, is related to residue diameter and cover. Close agreement is found between predicted and actual parameter values obtained from the regression relations. The regression equations can be used to estimate the beginning of motion for other residue materials if residue diameter and cover are known.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.