Factor Xa plays a critical role in the formation of blood clots. This serine protease catalyzes the conversion of prothrombin to thrombin, the first joint step that links the intrinsic and extrinsic coagulation pathways. There is considerable interest in the development of factor Xa inhibitors for the intervention in thrombic diseases. This paper presents the structure of the inhibitor ZK-807834, also known as CI-1031, bound to factor Xa and provides the details of the protein purification and crystallization. Results from mass spectrometry indicate that the factor Xa underwent autolysis during crystallization and the first EGF-like domain was cleaved from the protein. The crystal structure of the complex shows that the amidine of ZK-807834 forms a salt bridge with Asp189 in the S1 pocket and the basic imidazoline fits snugly into the S4 site. The central pyridine ring provides a fairly rigid linker between these groups. This rigidity helps minimize entropic losses during binding. In addition, the structure reveals new interactions that were not found in the previous factor Xa/inhibitor complexes. ZK-807834 forms a strong hydrogen bond between an ionized 2-hydroxy group and Ser195 of factor Xa. There is also an aromatic ring-stacking interaction between the inhibitor and Trp215 in the S4 pocket. These interactions contribute to both the potency of this compound (K(I) = 0.11 nM) and the >2500-fold selectivity against homologous serine proteases such as trypsin.
Potent and selective inhibitors of inducible nitric oxide synthase (iNOS) (EC 1.14.13.39) were identified in an encoded combinatorial chemical library that blocked human iNOS dimerization, and thereby NO production. In a cell-based iNOS assay (A-172 astrocytoma cells) the inhibitors had low-nanomolar IC 50 values and thus were >1,000-fold more potent than the substrate-based direct iNOS inhibitors 1400W and N-methyl-L-arginine. Biochemical studies confirmed that inhibitors caused accumulation of iNOS monomers in mouse macrophage RAW 264.7 cells. High affinity (Kd Ϸ 3 nM) of inhibitors for isolated iNOS monomers was confirmed by using a radioligand binding assay. Inhibitors were >1,000-fold selective for iNOS versus endothelial NOS dimerization in a cellbased assay. The crystal structure of inhibitor bound to the monomeric iNOS oxygenase domain revealed inhibitor-heme coordination and substantial perturbation of the substrate binding site and the dimerization interface, indicating that this small molecule acts by allosterically disrupting protein-protein interactions at the dimer interface. These results provide a mechanism-based approach to highly selective iNOS inhibition. Inhibitors were active in vivo, with ED 50 values of <2 mg͞kg in a rat model of endotoxininduced systemic iNOS induction. Thus, this class of dimerization inhibitors has broad therapeutic potential in iNOS-mediated pathologies.T he mammalian nitric ox ide synthase (NOS) (EC 1.14.13.39) enzyme family comprises three isoforms: inducible (iNOS), neuronal, and endothelial NOS. NOS isoforms are homodimers that catalyze NADPH-dependent oxidation of L-arginine to NO⅐ and citrulline (1-3). NOS monomers consist of an oxidoreductase domain and an oxygenase domain. The reductase domain is homologous to cytochrome P450 reductase and contains binding sites for NADPH, FAD, and FMN (4, 5). The oxygenase domain has binding sites for L-arginine, the heme prosthetic group, and tetrahydrobiopterin (H 4 B). Formation of stable NOS homodimers requires structural elements in the oxygenase domain and is an H 4 B-, substrate-, and heme-dependent process (6 -8). Dimerization of NOS is required for fully coupled enzyme activity because the f low of electrons during catalysis occurs in trans from the reductase domain of one monomer subunit to the oxygenase domain of the other monomer (9). The crystal structures of oxygenase domains of murine iNOS monomer (10), murine and human iNOS dimer (11-13), and human and bovine endothelial NOS dimer (13, 14) indicate a high degree of structural similarity within the critical catalytic center and dimer interface regions between NOS isoforms.NO⅐ plays a pivotal role in the physiology and pathophysiology of the central nervous, cardiovascular, and immune systems (15-17). The reactivity of NO⅐ toward molecular oxygen, thiols, transition metal centers, and other biological targets enables NO⅐ to function both as a rapidly reversible, specific, and local signal transduction molecule as well as a nonspecific mediator of tissue damage (1...
In this study we examined the role of inducible nitric oxide synthase (iNOS) in acute respiratory distress syndrome (ARDS) in sheep with severe combined burn and smoke inhalation injury. BBS-2, a potent and highly selective iNOS dimerization inhibitor, was used to exclude effects on the endothelial and neuronal NOS isoforms. Seven days after surgical recovery, sheep were given a burn (40% of total body surface, 3rd degree) and insufflated with cotton smoke (48 breaths, < 40 degrees C) under anesthesia. BBS-2 was provided by constant infusion at 100 microg/kg/hour, beginning 1 hour after injury. During 48 hours, control sheep developed multiple signs of ARDS. These included decreased pulmonary gas exchange, increased pulmonary edema, abnormal lung compliance, and extensive airway obstruction. These pathologies were associated with a large increase in tracheal blood flow and elevated plasma NO2-/NO3- (NOx) levels. These variables were all stable in sham animals. Treatment of injured sheep with BBS-2 attenuated the increases in tracheal blood flow and plasma NOx levels, and significantly attenuated all the pulmonary pathologies that were noted. The results provide definitive evidence that iNOS is a key mediator of pulmonary pathology in sheep with ARDS resulting from combined burn and smoke inhalation injury.
A series of potent and selective inducible nitric-oxide synthase (iNOS) inhibitors was shown to prevent iNOS dimerization in cells and inhibit iNOS in vivo. These inhibitors are now shown to block dimerization of purified human iNOS monomers. A 3 H-labeled inhibitor bound to full-length human iNOS monomer with apparent K d ϳ1.8 nM and had a slow off rate, 1.2 ؋ 10 ؊4 s ؊1 . Inhibitors also bound with high affinity to both murine full-length and murine oxygenase domain iNOS monomers. Spectroscopy and competition binding with imidazole confirmed an inhibitor-heme interaction. Inhibitor affinity in the binding assay (apparent K d values from 330 pM to 27 nM) correlated with potency in a cellbased iNOS assay (IC 50 values from 290 pM to 270 nM). Inhibitor potency in cells was not prevented by medium supplementation with L-arginine or sepiapterin, but inhibition decreased with time of addition after cytokine stimulation. The results are consistent with a mechanism whereby inhibitors bind to a heme-containing iNOS monomer species to form an inactive iNOS monomer-heme-inhibitor complex in a pterin-and L-arginineindependent manner. The selectivity for inhibiting dimerization of iNOS versus endothelial and neuronal NOS suggests that the energetics and kinetics of monomer-dimer equilibria are substantially different for the mammalian NOS isoforms. These inhibitors provide new research tools to explore these processes.The mammalian nitric-oxide synthase (NOS) 1 family consists of three isoforms as follows: cytokine-inducible (iNOS), neuronal (nNOS), and endothelial NOS (eNOS). NOS isoforms are homodimers that catalyze NADPH-dependent oxidation of L-arginine to nitric oxide (NO) and L-citrulline (1-3). Each monomer subunit of the dimer consists of a C-terminal reductase domain that contains binding sites for NADPH, FAD, FMN, and calmodulin, and an N-terminal oxygenase domain that contains binding sites for heme, tetrahydrobiopterin (H 4 B), and L-arginine (3-7). As in cytochrome P-450, the NOS heme iron coordinates to the protein through a cysteine thiolate (6 -8), binds O 2 as a sixth ligand (9), and participates directly in catalysis (9 -13). The heme ligands CO, Ϫ CN, imidazole, N-phenylimidazoles, and other imidazole-containing compounds all inhibit NO synthesis (10, 14 -17).The NOS isoforms are only active as homodimers (18 -20). For iNOS (5) and nNOS (21-23), only the oxygenase domains of two monomers interact to form the dimer (24). Dimerization of iNOS is required for fully coupled enzyme activity because the flow of electrons during catalysis occurs in trans from the reductase domain of one monomer to the oxygenase domain of the other monomer (25). Dimerization of NOS monomers is initiated by heme insertion, which results in rapid conformational changes (18,19,26). The heme-containing iNOS monomer is an intermediate in dimerization and, in the presence of H 4 B and L-arginine, forms a stable active dimer (18,24,(27)(28)(29).Highly potent and selective pyrimidineimidazole-based iNOS dimerization inhibitors were disc...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.