WebLogo generates sequence logos, graphical representations of the patterns within a multiple sequence alignment. Sequence logos provide a richer and more precise description of sequence similarity than consensus sequences and can rapidly reveal significant features of the alignment otherwise difficult to perceive. Each logo consists of stacks of letters, one stack for each position in the sequence. The overall height of each stack indicates the sequence conservation at that position (measured in bits), whereas the height of symbols within the stack reflects the relative frequency of the corresponding amino or nucleic acid at that position. WebLogo has been enhanced recently with additional features and options, to provide a convenient and highly configurable sequence logo generator. A command line interface and the complete, open WebLogo source code are available for local installation and customization.Sequence logos were invented by Tom Schneider and Mike Stephens (Schneider and Stephens 1990;Shaner et al. 1993) to display patterns in sequence conservation, and to assist in discovering and analyzing those patterns. As an example, the accompanying figure (Fig. 1) shows how WebLogo can help interpret the sequence-specific binding of the protein CAP to its DNA recognition site (Schultz et al. 1991). Homodimeric DNA-binding proteins typically display a symmetric double hump in the DNA binding-site logo (Schneider and Stephens 1990), as shown in the figure. Deviations from this basic pattern can indicate additional features; a highly conserved residue in the center of such a pattern may indicate DNA distortion or base flipping (Schneider 2001); an unexpectedly high-sequence conservation may be due to overlapping binding sites (Schneider et al. 1986). Protein logos can illuminate patterns of amino acid conservation that are often of structural or functional importance (Galperin et al. 2001;Rigden et al. 2003). Sequence logos have also been used to display patterns in the BLOCKS protein sequence database (Henikoff et al. 1995), and in DNA-binding site motifs (Robison et al. 1998;Nelson et al. 2002), to analyze splice sites (Stephens and Schneider 1992;Emmert et al. 2001), and in a variety of other contexts. Additional examples, and the raw data for the example presented here, can be found on the WebLogo examples page (http://weblogo.berkeley.edu/examples.html).The logo generation form (http://weblogo.berkeley.edu/ logo.cgi) can process RNA, DNA, or protein multiple sequence alignments provided in either FASTA (Pearson and Lipman 1988) or CLUSTAL (Higgins and Sharp 1988) formats. If the user does not explicitly specify the sequence type, then WebLogo will make a determination on the basis of the symbols found within the sequences. A logo represents each column of the alignment by a stack of letters, with the height of each letter proportional to the observed frequency of the corresponding amino acid or nucleotide, and the overall height of each stack proportional to the sequence conservation, measured in bits, at tha...
Summary DNA cytosine methylation is a central epigenetic modification that plays essential roles in cellular processes including genome regulation, development and disease. Here we present the first genome-wide, single-base resolution maps of methylated cytosines in a mammalian genome, from both human embryonic stem cells and fetal fibroblasts, along with comparative analysis of mRNA and small RNA components of the transcriptome, several histone modifications, and sites of DNA-protein interaction for several key regulatory factors. Widespread differences were identified in the composition and patterning of cytosine methylation between the two genomes. Nearly one-quarter of all methylation identified in embryonic stem cells was in a non-CG context, suggesting that they may utilize different methylation mechanisms to affect gene regulation. Methylation in non-CG contexts showed enrichment in gene bodies and depletion in protein binding sites and enhancers. Non-CG methylation disappeared upon induced differentiation of the embryonic stem cells, and was restored in induced pluripotent stem cells. We identified hundreds of differentially methylated regions proximal to genes involved in pluripotency and differentiation, and widespread reduced methylation levels in fibroblasts associated with lower transcriptional activity. These reference epigenomes provide a foundation for future studies exploring this key epigenetic modification in human disease and development.
N6-methyladenosine (m6A) is the most prevalent internal (non-cap) modification present in the messenger RNA (mRNA) of all higher eukaryotes1,2. Although essential to cell viability and development3–5, the exact role of m6A modification remains to be determined. The recent discovery of two m6A demethylases in mammalian cells highlighted the importance of m6A in basic biological functions and disease6–8. Here we show that m6A is selectively recognized by the human YTH domain family 2 (YTHDF2) protein to regulate mRNA degradation. We identified over 3,000 cellular RNA targets of YTHDF2, most of which are mRNAs, but which also include non-coding RNAs, with a conserved core motif of G(m6A)C. We further establish the role of YTHDF2 in RNA metabolism, showing that binding of YTHDF2 results in the localization of bound mRNA from the translatable pool to mRNA decay sites, such as processing bodies9. The C-terminal domain of YTHDF2 selectively binds to m6A-containing mRNA whereas the N-terminal domain is responsible for the localization of the YTHDF2-mRNA complex to cellular RNA decay sites. Our results indicate that the dynamic m6A modification is recognized by selective-binding proteins to affect the translation status and lifetime of mRNA.
Eukaryotic gene transcription is accompanied by acetylation and methylation of nucleosomes near promoters, but the locations and roles of histone modifications elsewhere in the genome remain unclear. We determined the chromatin modification states in high resolution along 30 Mb of the human genome and found that active promoters are marked by trimethylation of Lys4 of histone H3 (H3K4), whereas enhancers are marked by monomethylation, but not trimethylation, of H3K4. We developed computational algorithms using these distinct chromatin signatures to identify new regulatory elements, predicting over 200 promoters and 400 enhancers within the 30-Mb region. This approach accurately predicted the location and function of independently identified regulatory elements with high sensitivity and specificity and uncovered a novel functional enhancer for the carnitine transporter SLC22A5 (OCTN2). Our results give insight into the connections between chromatin modifications and transcriptional regulatory activity and provide a new tool for the functional annotation of the human genome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.