Highlights d TubeMap enables fast construction of labeled vascular graphs from TB-sized images d Automated arterio-venous annotations are based on iDISCO+ immunolabeling d We measure regional variations in vessel topology and arterio-venous distances d We study the plasticity of this network in stroke and sensorydeprivation models
IMPORTANCE Intravenous thrombolysis (IVT) followed by mechanical thrombectomy (MT) is recommended to treat acute ischemic stroke (AIS) with a large vessel occlusion (LVO). Most hospitals do not have on-site MT facilities, and most patients need to be transferred secondarily after IVT (drip and ship), which may have an effect on the neurologic outcome.OBJECTIVE To compare the functional independence at 3 months between patients treated under the drip-and-ship paradigm and those treated on site (mothership). DESIGN, SETTING, AND PARTICIPANTSThis study used a prospectively gathered registry of patients with AIS to select patients admitted through the Saint-Antoine and Tenon (drip and ship) or the Fondation Rothschild (mothership) hospitals from January 1, 2013, through April 30, 2016. The study included patients older than 18 years treated with bridging therapy for AIS with LVO of the anterior circulation. Among the 159 patients who received MT at the mothership, 100 had been transferred after IVT from the drip-and-ship hospitals and 59 had received IVT on site. MAIN OUTCOMES AND MEASURESThe main outcome was 3-month functional independence (modified Rankin scale score Յ2). Both groups were compared using a multivariate linear model, including variables that were significantly different in the 2 groups.RESULTS During the study period, 497 patients were hospitalized at the drip-and-ship and mothership hospitals for an AIS eligible to reperfusion therapy; 11 patients had a basilar artery occlusion and were excluded, leaving 100 patients in the drip-and-ship group (mean age, 73 years; age range, 60-81 years; 57 men [57.0%]) and 59 in the mothership group (mean age, 70 years; age range, 58-82 years; 29 men [49.2%]). The proportion of patients with a favorable neurologic outcome at 3 months was similar in both groups (drip and ship, 61 [61.0%]; mothership, 30 [50.8%]; P = .26), even after adjusting the analysis for the baseline National Institutes of Health Stroke Scale score, diffusion-weighted imaging Alberta Stroke Program Early Computed Tomography Score, and general anesthesia (P = .82). Patients had less severe conditions in the drip-and-ship group (median baseline National Institutes of Health Stroke Scale score, 15 vs 17 [P = .03]; median diffusion-weighted imaging Alberta Stroke Program Early Computed Tomography Score, 7.5 vs 7 [P = .05]). Process times were longer in the drip-and-ship group (onset-to-needle time, 150 vs 135 minutes; onset-to-puncture time, 248 vs 189 minutes; and onset-to-recanalization time, 297 vs 240 minutes; P < .001). Both groups were similar in terms of substantial recanalization (Thrombolysis in Cerebral Ischemia scores 2B to 3; drip and ship, 84 [84.0%]; mothership, 47 [79.7%]; P = .49) and symptomatic hemorrhagic transformation (drip and ship, 2 [2.0%]; mothership, 2 [3.4%]; P = .63).CONCLUSIONS AND RELEVANCE This study found that patients treated under the drip-and-ship paradigm also benefit from bridging therapy, with no statistically significant difference compared with those treated ...
SummaryWhile neurogenic stem cells have been identified in rodent and human skin, their manipulation and further characterization are hampered by a lack of specific markers. Here, we perform genetic tracing of the progeny of boundary cap (BC) cells, a neural-crest-derived cell population localized at peripheral nerve entry/exit points. We show that BC derivatives migrate along peripheral nerves to reach the skin, where they give rise to terminal glia associated with dermal nerve endings. Dermal BC derivatives also include cells that self-renew in sphere culture and have broad in vitro differentiation potential. Upon transplantation into adult mouse dorsal root ganglia, skin BC derivatives efficiently differentiate into various types of mature sensory neurons. Together, this work establishes the embryonic origin, pathway of migration, and in vivo neurogenic potential of a major component of skin stem-like cells. It provides genetic tools to study and manipulate this population of high interest for medical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.