Traditional right ventricular (RV) pacing for the management of bradyarrhythmias has been pursued successfully for decades, although there remains debate regarding optimal pacing site with respect to both hemodynamic and clinical outcomes. The deleterious effects of long-term RV apical pacing have been well recognized. This has generated interest in approaches providing more physiological stimulation, namely, His bundle pacing (HBP). This paper reviews the anatomy of the His bundle, early clinical observations, and current approaches to permanent HBP. By stimulating the His-Purkinje network, HBP engages electrical activation of both ventricles and may avoid marked dyssynchrony. Recent studies have also demonstrated the potential of HBP in patients with underlying left bundle branch block and cardiomyopathy. HBP holds promise as an attractive mode to achieve physiological pacing. Widespread adaptation of this technique is dependent on enhancements in technology, as well as further validation of efficacy in large randomized clinical trials.
Background: The Subcutaneous ICD (S-ICD) is safe and effective for sudden cardiac death prevention. However, patients in previous S-ICD studies had fewer comorbidities, less left ventricular dysfunction and received more inappropriate shocks (IAS) than in typical transvenous (TV)-ICD trials. The UNTOUCHED trial was designed to evaluate the IAS rate in a more typical, contemporary ICD patient population implanted with the S-ICD using standardized programming and enhanced discrimination algorithms. Methods: Primary prevention patients with left ventricular ejection fraction (LVEF) ≤ 35% and no pacing indications were included. Generation 2 or 3 S-ICD devices were implanted and programmed with rate-based therapy delivery for rates ≥ 250 beats per minute (bpm) and morphology discrimination for rates ≥200 and < 250 bpm. Patients were followed for 18 months. The primary endpoint was the IAS free rate compared to a 91.6% performance goal, derived from the results for the ICD-only patients in the MADIT-RIT study. Kaplan-Meier analyses were performed to evaluate event-free rates for IAS, all cause shock, and complications. Multivariable proportional hazard analysis was performed to determine predictors of endpoints. Results: S-ICD implant was attempted in 1116 patients and 1111 patients were included in post-implant follow-up analysis. The cohort had a mean age of 55.8±12.4 years, 25.6% women, 23.4% black race, 53.5% with ischemic heart disease, 87.7% with symptomatic heart failure and a mean LVEF of 26.4±5.8%. Eighteen-month freedom from IAS was 95.9% (Lower confidence limit LCL 94.8%). Predictors of reduced incidence of IAS were implanting the most recent generation of device, using the three-incision technique, no history of atrial fibrillation, and ischemic etiology. The 18-month all cause shock free rate was 90.6% (LCL 89.0%), meeting the prespecified performance goal of 85.8%. Conversion success rate for appropriate, discrete episodes was 98.4%. Complication free rate at 18 months was 92.7%. Conclusions: This study demonstrates high efficacy and safety with contemporary S-ICD devices and programming despite the relatively high incidence of co-morbidities in comparison to earlier S-ICD trials. The inappropriate shock rate (3.1% at one year) is the lowest reported for the S-ICD and lower than many TV ICD studies using contemporary programming to reduce IAS. Clinical Trial Registration: URL https://clinicaltrials.gov Unique Identifier NCT02433379
BACKGROUND The His-SYNC pilot trial was the first randomized comparison between His bundle pacing in lieu of a left ventricular lead for cardiac resynchronization therapy (His-CRT) and biventricular pacing (BiV-CRT), but was limited by high rates of crossover. OBJECTIVE To evaluate the results of the His-SYNC pilot trial utilizing treatment-received (TR) and per-protocol (PP) analyses. METHODS The His-SYNC pilot was a multicenter, prospective, single-blinded, randomized, controlled trial comparing His-CRT vs BiV-CRT in patients meeting standard indications for CRT (eg, NYHA II-IV patients with QRS .120 ms). Crossovers were required based on prespecified criteria. The primary endpoints analyzed included improvement in QRS duration, left ventricular ejection fraction (LVEF), and freedom from cardiovascular (CV) hospitalization and mortality. RESULTS Among 41 patients enrolled (aged 64 6 13 years, 38% female, LVEF 28%, QRS 168 6 18 ms), 21 were randomized to His-CRT and 20 to BiV-CRT. Crossover occurred in 48% of His-CRT and 26% of BiV-CRT. The most common reason for crossover from His-CRT was inability to correct QRS owing to nonspecific intraventricular conduction delay (n 5 5). Patients treated with His-CRT demonstrated greater QRS narrowing compared to BiV (125 6 22 ms vs Funding: None. Conflicts of Interest: Dr Gaurav Upadhyay has been a speaker for Abbott, Biotronik and Medtronic, and has been a consultant to Abbott, Biotronik, and Medtronic. Dr Pugazhendhi Vijayaraman has been consultant to Abbott, Biotronik, Boston Scientific, and Medtronic; he also has a patent pending for a His delivery tool. Dr Hemal Nayak has been a speaker for Medtronic, Biotronik, and Boston Scientific. Dr Nishant Verma has been a speaker for Biotronik and Medtronic. Dr Gopi Dandamudi has been a speaker and consultant for Medtronic and serves on the advisory board for Biotronik. Dr Parikshit Sharma has been a speaker for Medtronic and has been a consultant for Abbott and Biotronik. Dr Moeen Saleem has been a speaker for Abbott, Medtronic, and Boston Scientific. Dr Faiz Subzposh has been a consultant to Medtronic. Dr Zaid Aziz has been a speaker for Biotronik. Dr Richard Trohman has been a speaker for Abbott, AltaThera Pharmaceuticals, Boston Scientific, Daiichi Sankyo, and Medtronic; he has been an advisor to Boston Scientific; he has received research grants from
Background: Septal activation in patients with left bundle-branch block (LBBB) patterns has not been described previously. We performed detailed intracardiac mapping of left septal conduction to assess for the presence and level of complete conduction block (CCB) in the His-Purkinje system. Response to His bundle pacing was assessed in patients with and without CCB in the left bundle. Methods: Left septal mapping was performed with a linear multielectrode catheter in consecutive patients with LBBB pattern referred for device implantation (n=38) or substrate mapping (n=47). QRS width, His duration, His-ventricular (HV) intervals, and septal conduction patterns were analyzed. The site of CCB was localized to the level of the left-sided His fibers (left intrahisian) or left bundle branch. Patients with ventricular activation preceded by Purkinje potentials were categorized as having intact Purkinje activation. Results: A total of 88 left septal conduction recordings were analyzed in 85 patients: 72 LBBB block pattern and 16 controls (narrow QRS, n=11; right bundle-branch block, n=5). Among patients with LBB block pattern, CCB within the proximal left conduction system was observed in 64% (n=46) and intact Purkinje activation in the remaining 36% (n=26). Intact Purkinje activation was observed in all controls. The site of block in patients with CCB was at the level of the left His bundle in 72% and in the proximal left bundle branch in 28%. His bundle pacing corrected wide QRS in 54% of all patients with LBBB pattern and 85% of those with CCB (94% left intrahisian, 62% proximal left bundle-branch). No patients with intact Purkinje activation demonstrated correction of QRS with His bundle pacing. CCB showed better predictive value (positive predictive value 85%, negative predictive value 100%, sensitivity 100%) than surface ECG criteria for correction with His bundle pacing. Conclusions: Heterogeneous septal conduction was observed in patients with surface LBBB pattern, ranging from no discrete block to CCB. When block was present, we observed pathology localized within the left-sided His fibers (left intrahisian block), which was most amenable to corrective His bundle pacing by recruitment of latent Purkinje fibers. ECG criteria for LBBB incompletely predicted CCB, and intracardiac data might be useful in refining patient selection for resynchronization therapy.
Background: Accurate and expedited identification of scar regions most prone to reentry is needed to guide ventricular tachycardia (VT) ablation. We aimed to prospectively assess outcomes of VT ablation guided primarily by the targeting of deceleration zones (DZ) identified by propagational analysis of ventricular activation during sinus rhythm. Methods: Patients with scar-related VT were prospectively enrolled in the University of Chicago VT Ablation Registry between 2016 and 2018. Isochronal late activation maps annotated to the latest local electrogram deflection were created with high-density multielectrode mapping catheters. Targeted ablation of DZ (>3 isochrones within 1cm radius) was performed, prioritizing later activated regions with maximal isochronal crowding. When possible, activation mapping of VT was performed, and successful ablation sites were compared with DZ locations for mechanistic correlation. Patients were prospectively followed for VT recurrence and mortality. Results: One hundred twenty patients (median age 65 years [59-71], 15% female, 50% nonischemic, median ejection fraction 31%) underwent 144 ablation procedures for scar-related VT. 57% of patients had previous ablation and epicardial access was employed in 59% of cases. High-density mapping during baseline rhythm was performed (2518 points [1615-3752] endocardial, 5049±2580 points epicardial) and identified an average of 2±1 DZ, which colocalized to successful termination sites in 95% of cases. The median total radiofrequency application duration was 29 min (21-38 min) to target DZ, representing ablation of 18% of the low-voltage area. At 12±10 months, 70% freedom from VT recurrence (80% in ischemic cardiomyopathy and 63% in nonischemic cardiomyopathy) was achieved. The overall survival rate was 87%. Conclusions: A novel voltage-independent high-density mapping display can identify the functional substrate for VT during sinus rhythm and guide targeted ablation, obviating the need for extensive radiofrequency delivery. Regions with isochronal crowding during the baseline rhythm were predictive of VT termination sites, providing mechanistic evidence that deceleration zones are highly arrhythmogenic, functioning as niduses for reentry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.