A microgrid (MG) is a discrete energy system consisting of an interconnection of distributed energy sources and loads capable of operating in parallel with or independently from the main power grid. The microgrid concept integrated with renewable energy generation and energy storage systems has gained significant interest recently, triggered by increasing demand for clean, efficient, secure, reliable and sustainable heat and electricity. However, the concept of efficient integration of energy storage systems faces many challenges (e.g., charging, discharging, safety, size, cost, reliability and overall management). Additionally, proper implementation and justification of these technologies in MGs cannot be done without energy management systems, which control various aspects of power management and operation of energy storage systems in microgrids. This review discusses different energy storage technologies that can have high penetration and integration in microgrids. Moreover, their working operations and characteristics are discussed. An overview of the controls of energy management systems for microgrids with distributed energy storage systems is also included in the scope of this review.
This paper demonstrates the application of Autotune, a methodology aimed at automatically producing calibrated building energy models using measured data, in two case studies. In the first case, a building model is de-tuned by deliberately injecting faults into more than 60 parameters. This model was then calibrated using Autotune and its accuracy with respect to the original model was evaluated in terms of the industry-standard normalized mean bias error and coefficient of variation of root mean squared error metrics set forth in ASHRAE Guideline 14. In addition to whole-building energy consumption, outputs including lighting, plug load profiles, HVAC energy consumption, zone temperatures, and other variables were analyzed. In the second case, Autotune calibration is compared directly to experts' manual calibration of an emulated-occupancy, full-size residential building with comparable calibration results in much less time. The paper concludes with a discussion of the key strengths and weaknesses of auto-calibration approaches.
The use of Phase Change Materials (PCM) in different building applications is a hot topic in today's R&D activities. Numerical simulations of PCM-based components are often used both for research activities and as a design tool, although present-day codes for building performance simulation (BPS) present some shortcomings that limit their reliability. One of these limitations is the limited possibility of replicating the effects given by thermal hysteresisa characteristic of several PCMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.