We propose a dataset to investigate the relationship between the fill level of bottles and tiny machine learning algorithms. Tiny machine learning is represented by any Artificial Intelligence algorithm (spanning from conventional decision tree classifiers to artificial neural networks) that can be deployed into a resource constrained micro controller unit (MCU). The data presented has been originally collected for a joint research project by STMicroelectronics and Sesovera.ai. This article describes the recorded image data of bottles with 4 levels of filling. The bottles contain sodium chloride sterile liquid for intravenous administration. One subject of investigation using this dataset could be the classification of the liquid fill level, for example, to ease continuous human visual monitoring which may represent an onerous time-consuming task. Automating the task can help to increase the human work productivity thus saving time. Under normal circumstances, human visual monitoring of the saline level in the bottle is required from time to time. When the saline liquid in the bottle is fully consumed, and the bottle is not replaced or the infusion process stopped immediately, the difference between the patient's blood pressure and the empty saline bottle could cause an outward rush of blood into the saline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.