Recent ab initio theoretical calculations of the electrical performance of several two-dimensional materials predict a low-field carrier mobility that spans several orders of magnitude (from 26,000 to 35 cm 2 V −1 s −1 , for example, for the hole mobility in monolayer phosphorene) depending on the physical approximations used. Given this state of uncertainty, we review critically the physical models employed, considering phosphorene, a group V material, as a specific example. We argue that the use of the most accurate models results in a calculated performance that is at the disappointing lower-end of the predicted range. We also employ first-principles methods to study high-field transport characteristics in mono-and bi-layer phosphorene. For thin multi-layer phosphorene we confirm the most disappointing results, with a strongly anisotropic carrier mobility that does not exceed ∼ 30 cm 2 V −1 s −1 at 300 K for electrons along the armchair direction.
The absence of a band gap in graphene makes it of minor interest for field-effect transistors. Layered metal chalcogenides have shown great potential in device applications thanks to their wide bandgap and high carrier mobility. Interestingly, in the ever-growing library of two-dimensional (2D) materials, monolayer InSe appears as one of the new promising candidates, although still in the initial stage of theoretical studies. Here, we present a theoretical study of this material using density functional theory (DFT) to determine the electronic band structure as well as the phonon spectrum and electron-phonon matrix elements. The electron-phonon scattering rates are obtained using Fermi’s Golden Rule and are used in a full-band Monte Carlo computer program to solve the Boltzmann transport equation (BTE) to evaluate the intrinsic low-field mobility and velocity-field characteristic. The electron-phonon matrix elements, accounting for both long- and short-range interactions, are considered to study the contributions of different scattering mechanisms. Since monolayer InSe is a polar piezoelectric material, scattering with optical phonons is dominated by the long-range interaction with longitudinal optical (LO) phonons while scattering with acoustic phonons is dominated by piezoelectric scattering with the longitudinal (LA) branch at room temperature (T = 300 K) due to a lack of a center of inversion symmetry in monolayer InSe. The low-field electron mobility, calculated considering all electron-phonon interactions, is found to be 110 cm2V−1s−1, whereas values of 188 cm2V−1s−1 and 365 cm2V−1s−1 are obtained considering the long-range and short-range interactions separately. Therefore, the calculated electron mobility of monolayer InSe seems to be competitive with other previously studied 2D materials and the piezoelectric properties of monolayer InSe make it a suitable material for a wide range of applications in next generation nanoelectronics.
The critical role of silicon and germanium in the semiconductor industry, combined with the need for extremely thin channels for scaled electronic devices, has motivated research towards monolayer silicon (silicene) and monolayer germanium (germanene). The lack of horizontal mirror (σh) symmetry in these two-dimensional crystals results in a very strong coupling—in principle diverging—of electrons to long wavelength flexural branch (ZA) phonons. For semi-metallic Dirac materials lacking σh symmetry, like silicene and germanene, this effect is further exacerbated by strong back-scattering at the Dirac cone. In order to gauge the intrinsic transport limitations of silicene and germanene, we perform low- and high-field transport studies using first-principles Monte-Carlo simulations. We take into account the full band structure and solve the electron-phonon matrix elements to treat correctly the material anisotropy and wavefunction overlap-integral effects. We avoid the divergence of the ZA phonon scattering rate through the introduction of an optimistic (1 nm long wavelength) cutoff for the ZA phonons. Even with this cutoff for long-wavelength ZA phonons, essentially prohibiting intravalley scattering, we observe that intervalley ZA phonon scattering dominates the overall transport properties. We obtain relatively large electron mobilities of 701 cm2 V−1 s−1 for silicene and 2327 cm2 V−1 s−1 for germanene. Our results show that silicene and germanene may exhibit electronic transport properties that could surpass those of many other two-dimensional materials, if intravalley ZA phonon scattering could be suppressed.
Theoretical studies of heat generation and diffusion in Si devices generally assume that hot electrons in Si lose their energy mainly to optical phonons. Here, we briefly review the history of this assumption, and using full-band Monte Carlo simulations—with electron-phonon scattering rates calculated using the rigid-ion approximation and both empirical pseudopotentials and Harris potentials—we show that, instead, electrons lose as much as 2/3 of their energy to acoustic phonons. The scattering rates that we have calculated have been used to study hot-electron effects, such as impact ionization and injection into SiO2, and are in rough agreement with those obtained using density functional theory. Moreover, direct subpicosecond pump-probe experimental results, some of them dating back to 1994, are consistent with the predictions of our model. We conclude that the study of heat generation and dissipation in nanometer-scale Si devices may require a substantial revision of the assumptions that have been considered “common wisdom” so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.