Direct
interactions between proteins are essential for the regulation
of their functions in biological pathways. Targeting the complex network
of protein–protein interactions (PPIs) has now been widely
recognized as an attractive means to therapeutically intervene in
disease states. Even though this is a challenging endeavor and PPIs
have long been regarded as “undruggable” targets, the
last two decades have seen an increasing number of successful examples
of PPI modulators, resulting in growing interest in this field. PPI
modulation requires novel approaches and the integrated efforts of
multiple disciplines to be a fruitful strategy. This perspective focuses
on the hub-protein 14-3-3, which has several hundred identified protein
interaction partners, and is therefore involved in a wide range of
cellular processes and diseases. Here, we aim to provide an integrated
overview of the approaches explored for the modulation of 14-3-3 PPIs
and review the examples resulting from these efforts in both inhibiting
and stabilizing specific 14-3-3 protein complexes by small molecules,
peptide mimetics, and natural products.
The mechanism-based risk for hyperkalemia has limited the use of mineralocorticoid receptor antagonists (MRAs) like eplerenone in cardio-renal diseases. Here, we describe the structure and property-driven lead generation and optimization, which resulted in identification of MR modulators (S)-1 and (S)-33. Both compounds were partial MRAs but still demonstrated equally efficacious organ protection as eplerenone after 4 weeks of treatment in uni-nephrectomized rats on high-salt diet and aldosterone infusion. Importantly, and in sharp contrast to eplerenone, this was achieved without substantial changes to the urine Na + /K + ratio after acute treatment in rat, which predicts a reduced risk for hyperkalemia. This work led to selection of (S)-1 (AZD9977) as the clinical candidate for treating MR-mediated cardio-renal diseases, including chronic kidney disease and heart failure. On the basis of our findings, we propose an empirical model for prediction of compounds with low risk of affecting the urinary Na + /K + ratio in vivo.
Epoxidation and dihydroxylation of 8-methyl-2,3,6,8a-tetrahydro-1H-indolizin-5-one proceeded from the concave face with good selectivity and gave advanced precursors for pumiliotoxin and allopumiliotoxin synthesis, respectively. The origin of the selectivity is believed to be stereoelectronic in nature and allows rapid entry to three different pumiliotoxin classes from a common intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.