This paper presents a novel approach for anomaly detection in industrial processes. The system solely relies on unlabeled data and employs a 1D-convolutional neural network-based deep autoencoder architecture. As a core novelty, we split the autoencoder latent space in discriminative and reconstructive latent features and introduce an auxiliary loss based on k-means clustering for the discriminatory latent variables. We employ a Top-K clustering objective for separating the latent space, selecting the most discriminative features from the latent space. We use the approach to the benchmark Tennessee Eastman data set to prove its applicability. We provide different ablation studies and analyze the method concerning various downstream tasks, including anomaly detection, binary and multi-class classification. The obtained results show the potential of the approach to improve downstream tasks compared to standard autoencoder architectures.
This paper proposes a novel deep learning architecture for estimating the remaining useful lifetime (RUL) of industrial components, which solely relies on the recently developed transformer architectures. The RUL estimation resorts to analysing degradation patterns within multivariate time series signals. Hence, we propose a novel shared temporal attention block that allows detecting RUL patterns with the progress of time. Furthermore, we develop a split-feature attention block that enables attending to features from different sensor channels. The proposed shared temporal attention layer in the encoder fulfils the goal of attending to temporal degradation patterns in the individual sensor signals before creating a shared correlation across the feature range. We develop two transformer architectures that are specifically designed to operate with multivariate time series data based on these novel attention blocks. We apply the architectures to the well known C-MAPSS benchmark dataset and provide various hyperparameter studies to analyse their impact on the performance. In addition, we provide a thorough comparison with recently presented state-of-the-art approaches and show that the proposed transformer architectures outperform the existing methods by a considerable margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.