Yeast Msh2p forms complexes with Msh3p and Msh6p to repair DNA mispairs that arise during DNA replication. In addition to their role in mismatch repair (MMR), the MSH2 and MSH3 gene products are required to remove 3' nonhomologous DNA tails during genetic recombination. The mismatch repair genes MSH6, MLH1, and PMS1, whose products interact with Msh2p, are not required in this process. We have identified mutations in MSH2 that do not disrupt genetic recombination but confer a strong defect in mismatch repair. Twenty-four msh2 mutations that conferred a dominant negative phenotype for mismatch repair were isolated. A subset of these mutations mapped to residues in Msh2p that were analogous to mutations identified in human nonpolyposis colorectal cancer msh2 kindreds. Approximately half of the these MMR-defective mutations retained wild-type or nearly wild-type activity for the removal of nonhomologous DNA tails during genetic recombination. The identification of mutations in MSH2 that disrupt mismatch repair without affecting recombination provides a first step in dissecting the Msh-effector protein complexes that are thought to play different roles during DNA repair and genetic recombination.
RecQ DNA helicases and Topo III topoisomerases have conserved genetic, physical, and functional interactions that are consistent with a model in which RecQ creates a recombination-dependent substrate that is resolved by Topo III. The phenotype associated with Topo III loss suggests that accumulation of a RecQ-created substrate is detrimental. In yeast, mutation of the TOP3 gene encoding Topo III causes pleiotropic defects that are suppressed by deletion of the RecQ homolog Sgs1. We searched for gene dosage suppressors of top3 and identified Pif1, a DNA helicase that acts with polarity opposite to that of Sgs1. Pif1 overexpression suppresses multiple top3 defects, but exacerbates sgs1 and sgs1 top3 defects. Furthermore, Pif1 helicase activity is essential in the absence of Top3 in an Sgs1-dependent manner. These data clearly demonstrate that Pif1 helicase activity is required to counteract Sgs1 helicase activity that has become uncoupled from Top3. Pif1 genetic interactions with the Sgs1-Top3 pathway are dependent upon homologous recombination. We also find that Pif1 is recruited to DNA repair foci and that the frequency of these foci is significantly increased in top3 mutants. Our results support a model in which Pif1 has a direct role in the prevention or repair of Sgs1-induced DNA damage that accumulates in top3 mutants.
In budding yeast, loss of topoisomerase III, encoded by the TOP3 gene, leads to a genomic instability phenotype that includes slow growth, hyper-sensitivity to genotoxic agents, mitotic hyper-recombination, increased chromosome missegregation, and meiotic failure. Slow growth and other defects of top3 mutants are suppressed by mutation of SGS1, which encodes the only RecQ helicase in S. cerevisiae. sgs1 is epistatic to top3, suggesting that the two proteins act in the same pathway. To identify other factors that function in the Sgs1-Top3 pathway, we undertook a genetic screen for non-sgs1 suppressors of top3 defects. We found that slow growth and DNA damage sensitivity of top3 mutants are suppressed by mutations in RAD51, RAD54, RAD55, and RAD57. In contrast, top3 mutants show extreme synergistic growth defects with mutations in RAD50, MRE11, XRS2, RDH54, and RAD1. We also analyzed recombination at the SUP4-o region, showing that in a rad51, rad54, rad55, or rad57 background top3Δ does not increase recombination to the same degree as in a wild-type strain. These results suggest that the presence of the Rad51 homologous recombination complex in a top3 background facilitates creation of detrimental intermediates by Sgs1. We present a model wherein Rad51 helps recruit Sgs1-Top3 to sites of replicative damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.