Meiotic development in yeast is characterized by the sequential induction of temporally distinct classes of genes. Genes that are induced at the middle stages of the pathway share a promoter element, termed the middle sporulation element (MSE), which interacts with the Ndt80 transcriptional activator. We have found that a subclass of MSEs are strong repressor sites during mitosis. SUM1 and HST1, genes previously associated with transcriptional silencing, are required for MSE-mediated repression. Sum1 binds specifically in vitro to MSEs that function as strong repressor sites in vivo. Repression by Sum1 is gene specific and does not extend to neighboring genes. These results suggest that mechanisms used to silence large regions of chromatin may also be used to regulate the expression of specific genes during development. NDT80 is regulated during mitosis by both the Sum1 and Ume6 repressors. These results suggest that progression through sporulation may be controlled by the regulated competition between the Sum1 repressor and Ndt80 activator at key MSEs.
We have streamlined the process of transferring plasmids into any yeast strain library by developing a novel mating-based, high-throughput method called selective ploidy ablation (SPA). SPA uses a universal plasmid donor strain that contains conditional centromeres on every chromosome. The plasmid-bearing donor is mated to a recipient, followed by removal of all donor-strain chromosomes, producing a haploid strain containing the transferred plasmid. As proof of principle, we used SPA to transfer plasmids containing wild-type and mutant alleles of DNA topoisomerase I (TOP1) into the haploid yeast genedisruption library. Overexpression of Top1 identified only one sensitive mutation, rpa34, while overexpression of top1-T 722 A allele, a camptothecin mimetic, identified 190 sensitive gene-disruption strains along with rpa34. In addition to known camptothecin-sensitive strains, this set contained mutations in genes involved in the Rpd3 histone deacetylase complex, the kinetochore, and vesicle trafficking. We further show that mutations in several ESCRT vesicle trafficking components increase Top1 levels, which is dependent on SUMO modification. These findings demonstrate the utility of the SPA technique to introduce plasmids into the haploid gene-disruption library to discover new interacting pathways.
The network of genes which mediates multiple drug resistance in yeast includes, among others, the PDR1 gene, which encodes a putative regulator of gene expression, and PDR5, a locus whose amplification leads to resistance. We demonstrate that disruption of PDR5 causes marked hypersensitivity not only to cycloheximide but also to sulphometuron methyl and the mitochondrial inhibitors chloramphenicol, lincomycin, erythromycin and antimycin. Genetic analysis of double mutants containing an insertion in PDR5 (pdr5:Tn5), which renders cells hypersensitive to cycloheximide, and a pdr1 mutation, which confers resistance to this inhibitor, indicates that the expression of resistance requires a functional PDR5 gene. The same interdependency is observed for chloramphenicol, but not for oligomycin, lincomycin, erythromycin or sulphometuron methyl. Northern analysis of PDR1 and PDR5 transcripts reveals that the 5.2 kbp PDR5 transcript is overexpressed in pdr1 (resistant) mutants, but underexpressed in a disruption of PDR1. These observations provide strong experimental support for our former proposal that the PDR5 gene is a target for regulation by the PDR1 gene product.
Mitogen-activated protein (MAP) kinase pathways are evolutionarily conserved kinase cascades that are required for the response of eukaryotic cells to a wide variety of environmental stimuli. MAP kinase pathways are also required for the execution of developmental and differentiative programs in a variety of cell and tissue types. SMK1 encodes a developmentally regulated MAP kinase in yeast that is required for spore wall morphogenesis. Cyclin-dependent kinase-activating kinases (CAKs) phosphorylate a conserved threonine residue in the activating loop of cyclin-dependent kinases. CAK1 encodes the major CAK activity in yeast and is required for cell cycle progression. The work presented here demonstrates that CAK1 functions positively in the spore wall morphogenesis pathway. First, CAK1 has been isolated as a dosage suppressor of a conditional smk1 mutant that is defective for spore wall morphogenesis. Second, CAK1 mRNA accumulates during spore development contemporaneously with SMK1 mRNA. Third, cak1 mutant strains have been isolated that are able to complete meiosis I and II but are specifically defective in assembly of the spore wall. These results show that cell cycle progression and morphogenetic pathways can be regulated by a single gene product and suggest mechanisms for coordinating these processes during development.
Meiotic development (sporulation) in Saccharomyces cerevisiae is characterized by an ordered pattern of gene expression, with sporulation-specific genes classified as early, middle, mid-late, or late depending on when they are expressed. SMK1 encodes a mitogen-activated protein kinase required for spore morphogenesis that is expressed as a middle sporulation-specific gene. Here, we identify the cis-acting DNA elements that regulate SMK1 transcription and characterize the phenotypes of mutants with altered expression patterns. The SMK1 promoter contains an upstream activating sequence (UAS S ) that specifically interacts with the transcriptional activator Abf1p. The Abf1p-binding sites from the early HOP1 and the middle SMK1 promoters are functionally interchangeable, demonstrating that these elements do not play a direct role in their differential transcriptional timing. Timing of SMK1 expression is determined by another cis-acting DNA sequence termed MSE (for middle sporulation element). The MSE is required not only for activation of SMK1 transcription during middle sporulation but also for its repression during vegetative growth and early meiosis. In addition, the SMK1 MSE can repress vegetative expression in the context of the HOP1 promoter and convert HOP1 from an early to a middle gene. SMK1 function is not contingent on its tight transcriptional regulation as a middle sporulationspecific gene. However, promoter mutants with different quantitative defects in SMK1 transcript levels during middle sporulation show distinct sporulation phenotypes.The life cycle of the yeast Saccharomyces cerevisiae comprises a series of interconnected growth states and developmental programs that are under both genetic and environmental control. Meiotic development (sporulation) is induced when a diploid cell is starved for essential nutrients and a fermentable carbon source (21). Following induction, the cell withdraws from the mitotic cycle at G 1 and enters meiotic prophase, during which a single round of DNA replication, synaptonemal complex formation, and recombination occur. Meiotic prophase is followed by the meiosis I reductional and meiosis II equational divisions. Spore wall morphogenesis initiates with the outgrowth of a double membranous structure (the prospore wall) from the outer plaques of each meiosis II spindle pole body which envelops each haploid meiotic product. Two layers that appear similar to the vegetative cell wall and two protective spore-specific layers are subsequently assembled from within and around the prospore wall. The end product of sporulation is the differentiated ascus which contains four dormant haploid spores. The tightly regulated sequence of cell cycle and morphogenetic events that occur during sporulation provides a model system for study of the mechanisms that regulate and coordinate development.During sporulation, specific sets of genes that can be classified as early, middle, mid-late, or late are sequentially expressed. Early genes are expressed at the onset of sporulation and are i...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.