Hollow sandcrete blocks constitute more than 90% of residential building construction in developing countries especially in West Africa. Over-reliance on dredged river sands and conventional ordinary Portland cement (OPC) contributes to environmental degradation and post-construction problems such as swelling and shrinkage-induced cracks prevalent in construction projects. The study investigates potential utilization of locally available materials such as laterite, calcite and calcined clay as ternary and quaternary blends to replace cement and quarry dust as 100% replacement of river sand with the aid of Taguchi-Response surface methodology approach. Optimum ternary blend of 24% calcined clay +1% calcite +75% OPC is recommended to achieve volume stability, higher compressive strength and higher flexural load capacity. Alternatively, ternary blends of 24% calcite +4% calcined clay +72% OPC can also be utilized. The improved mechanical properties were attributed to the Na- and Ca-rich aluminosilicates provided by the blended cements. Successful utilization of ternary and quaternary blended cements to produce stronger, durable and eco-friendly sandcrete blocks depends on utilization of high binder-to-aggregate ratio, optimal combination of the constituents, appropriate water-cement ratio and curing/production method. Partial and 100% replacement of river sand with granite dust is possible and contributes to reduction of environmental problems caused by river dredging as well as cleaner, ecofriendly construction. Ternary and quaternary blended cements is recommended to avert post-construction problems such as swelling and shrinkage-induced cracks prevalent in construction projects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.