We present end-to-end neural models for detecting metaphorical word use in context. We show that relatively standard BiLSTM models which operate on complete sentences work well in this setting, in comparison to previous work that used more restricted forms of linguistic context. These models establish a new state-of-the-art on existing verb metaphor detection benchmarks, and show strong performance on jointly predicting the metaphoricity of all words in a running text.
Household traffic surveys are widely used in travel behavior analysis, especially in travel time and distance analysis. Unfortunately, any one kind of household traffic surveys has its own problems. Even all household traffic survey data is accurate, it is difficult to get the trip routes information. To our delight, electric map API (e.g., Google Maps, Apple Maps, Baidu Maps, and Auto Navi Maps) could provide the trip route and time information, which remedies the traditional traffic survey’s defect. Thus, we can take advantage of the two kinds of data and integrate them into travel behavior analysis. In order to test the validity of the Baidu electric map API data, a field study on 300 taxi OD pairs is carried out. According to statistical analysis, the average matching rate of total OD pairs is 90.74%, which reflects high accuracy of electric map API data. Based on the fused data of household traffic survey and electric map API, travel behavior on trip time and distance is analyzed. Results show that most purposes’ trip distances distributions are concentrated, which are no more than 10 kilometers. It is worth noting that students have the shortest travel distance and company business’s travel distance distribution is dispersed, which has the longest travel distance. Compared to travel distance, the standard deviations of all purposes’ travel time are greater than the travel distance. Car users have longer travel distance than bus travelers, and their average travel distance is 8.58km.
Taxi as a door-to-door, all-weather way of travel is an important part of the urban transportation system. A fundamental understanding of temporal-spatial variation and its related influential factors are essential for taxi regulation and urban planning. In this paper, we explore the correlation between taxi demand and socio-economic, transport system and land use patterns based on taxi GPS trajectory and POI (point of interest) data of Qingdao City. The geographically weighted regression (GWR) model is used to describe the influence factors of spatial heterogeneity of the taxi demand and visualize the spatial distributions of parameter estimations. Results indicate that during the peak hours, there are some differences in taxi demand between workdays and weekends. Residential density and housing prices increase the number of taxi trips. Road density, parking lot density and bus station density are positively associated with the taxi demand. It is also found that the higher of the proportion of commercial area and public service area, the greater of the taxi demand, while the proportion of residential area and the land use mix have a negative impact on taxi demand. This paper provides some references for understanding the internal urban environmental factors generating from the taxi travel demand, and provides insights for reducing the taxi vacancy rate, forecasting taxi temporal-spatial demand and urban public transportation system planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.