A majority of subjects with insulin resistance and hyperinsulinemia can maintain their blood glucose levels normal for the whole life presumably through protein kinase B (Akt)-dependent insulin signaling. In this study, we found that the basal Akt phosphorylation level was increased in liver and gastrocnemius of mice under the high-fat diet (HFD). Levels of mitochondrial DNA and expression of some mitochondrion-associated genes were decreased by the HFD primarily in liver. Triglyceride content was increased in both liver and gastrocnemius by the HFD. Oxidative stress was induced by the HFD in both liver and gastrocnemius. Insulin sensitivity was decreased by the HFD. All of these changes were largely or completely reversed by treatment of animals with the phosphatidylinositol 3-kinase inhibitor LY-294002 during the time when animals usually do not eat. Consequently, the overall insulin sensitivity was increased by treatment with LY-294002. Together, our results indicate that increased basal Akt-dependent insulin signaling suppresses mitochondrial production, increases ectopic fat accumulation, induces oxidative stress, and desensitizes insulin signaling in subjects with insulin resistance and hyperinsulinemia.
Hepatic gluconeogenesis is elevated in diabetes and a major contributor to hyperglycemia. Stromal cell-derived factor-1 (SDF-1) is a chemokine and an activator of Akt. In this study, we tested the hypothesis that SDF-1 suppresses hepatic gluconeogenesis through Akt. Our results from isolated primary hepatocytes show that SDF-1␣ and SDF-1 inhibited glucose production via gluconeogenesis and reduced transcript levels of key gluconeogenic genes glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Additionally, SDF-1␣ and SDF-1 both inhibited activation of the PEPCK promoter. In examining the mechanism by which SDF-1 inhibits gluconeogenesis, we found that SDF-1 promoted phosphorylation of Akt, FoxO1, and c-Src, but did not activate insulin receptor substrate-1-like insulin. Blockade of Akt activation by LY294002, FoxO1 translocation by constitutively nuclear FoxO1 mutant, or c-Src activation by the chemical inhibitor PP2, respectively, blunted SDF-1 suppression of gluconeogenesis. Finally, our results show that knocking down the level of SDF-1 receptor CXCR4 mRNA blocked SDF-1 suppression of gluconeogenesis. Together, our results demonstrate that SDF-1 is capable of inhibiting gluconeogenesis in primary hepatocytes through a signaling pathway distinct from the insulin signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.