Analyzing the factors that affect the energy efficiency of vehicles is crucial to the overall improvement of the environmental efficiency of the transport sector, one of the top polluting sectors at the global level. This study analyses the energy consumption rate (ECR) and driving range of battery electric vehicles (BEVs) and provides insight into the factors that affect their energy consumption by harnessing big data from real-world driving. The analysis relied on four data sources: (i) driving patterns collected from 741 drivers over a two-year period; (ii) drivers' characteristics; (iii) road type; (iv) weather conditions. The results of the analysis measure the mean ECR of BEVs at 0.183 kWh/km, underline a 34% increase in ECR and a 25% decrease in driving range in the winter with respect to the summer, and suggest the electricity tariff for BEVs to be cost efficient with respect to conventional ones. Moreover, the results of the analysis show that driving speed, acceleration and temperature have non-linear effects on the ECR, while season and precipitation level have a strong linear effect. The econometric model of the ECR of BEVs suggests that the optimal driving speed is between 45 and 56 km/h and the ideal temperature from an energy efficiency perspective is 14 °C. Clearly, the performance of BEVs highly depends on the driving environment, the driving patterns, and the weather conditions, and the findings from this study enlighten the consumers to be more informed and manufacturers to be more aware about the actual utilization of BEVs.
Two identical open-ended contingent valuation surveys assessing willingness-topay for better protection against flooding were administered in 2005 and 2010 at the same site. The 2010 survey was administered to the same respondents as those interviewed in 2005 as well as to new participants. This experimental design allows us to separate the pure temporal dimension from the spatial and social dimensions of transferability, thereby permitting an investigation of the temporal reliability associated with a transfer of value estimates over a 5-year time horizon. Having isolated the pure effect of time, the design further allows assessing the social dimension of transferability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.