Background: Biofilms are multicellular communities of microorganisms held together by a self-produced extracellular matrix. The ability of microbes to form biofilm is a universal, ubiquitous, and dynamic process. This dynamic process of biofilms establishes an important strategy to withstand and survive harsh environmental conditions and antimicrobial agents. Objective: This review paper aims to give an overview of antibiotic resistance, intervention, and treatment of infections caused by biofilm-forming organisms. Moreover, it can also help to motivate scholars to search for new anti-biofilm strategies and most appropriate methods to tackle the effect of biofilm infections on healthcare services. Methods: This paper was written by reviewing recent research and review articles which are reporting about the antibiotic resistance, prevention, and treatment of biofilm-producing organisms. Conclusion: Bioprospecting for quorum quenching compounds can be an appropriate solution for controlling biofilm infections.
Objective. This study has investigated the antimicrobial activity of extracts of indigenous wild mushrooms against selected organisms. Methods. Thirty-five (35) indigenous wild mushrooms were collected from Arabuko-Sokoke and Kakamega National Reserve Forests, Kenya. All mushrooms were identified and their contents were extracted and screened for their antimicrobial activities against Escherichia coli (clinical isolate), Klebsiella pneumoniae (ATCC 13883), Pseudomonas aeruginosa (clinical isolate), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 25923), MRSA (ATCC 33591), Candida albicans (clinical isolate), and Candida parapsilosis (ATCC 90018) using tetrazolium microtiter plate bioassay method. Results. Of the 35 tested mushroom extracts, extracts of three (3) mushrooms, namely, Trametes spp. (Arabuko-Sokoke forest), Trametes, and Microporus spp. (Kakamega forest), have shown promising antimicrobial activities against the tested organisms. The S. aureus (ATCC 25923), P. aeruginosa (ATCC 27853), and Methicillin-Resistant Staphylococcus aureus (MRSA) (ATCC 33591) were the most susceptible to chloroform extract of Trametes spp. collected from Arabuko-Sokoke forest. Of the tested organisms, S. aureus (ATCC 25923) was the most susceptible whereas E. coli was the most resistant organism to the hot water extract of Trametes spp. collected from Arabuko-Sokoke forest. Chloroform extract of Microporus spp. has shown the highest antibacterial activity against S. aureus (ATCC 25923), MRSA (ATCC 33591), and K. pneumoniae (ATCC 13883) but limited activity against E.coli. All extracts of the three wild mushrooms have shown the most antibacterial activities against S. aureus (ATCC 25923). Conclusion. The present study has shown that the extracts of the three wild mushrooms have shown promising antimicrobial activities against the tested organisms.
Mushrooms produce a variety of bioactive compounds that are known to have a potential source of antioxidant and antimicrobial properties. Natural antioxidants can protect against free radicals without any side effects. The purpose of this study was to evaluate the antioxidant and antimicrobial activities of Auricularia and Termitomyces extracts. Specimens of Auricularia and Termitomyces spp. were collected from Kakamega National Reserve Forest in Kenya. Specimens were identified, extracted, and screened for their antioxidant and antimicrobial activities using stable free radical DPPH and colorimetric bioassay methods, respectively. The antimicrobial activity of the extracts was tested against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, MRSA, Candida albicans, and Candida parapsilosis. The maximum scavenging activity of hot water extract of Auricularia spp. was observed at 70.4% with the IC50 value of 40 μg/mL. Of the three extracts of Termitomyces spp., 70% ethanol extract has shown the highest scavenging activity (63%) with the IC50 value of 50 μg/mL. Chloroform and hot water extracts of Auricularia have shown statistically significantly different antifungal activities against C. parapsilosis (df = 2, F = 22.49, p ≤ 0.05). Of all the organisms, S. aureus was highly susceptible to 70% ethanol and hot water extracts of Termitomyces spp. with minimum inhibitory concentration values of 0.67±0.29 mg/mL. S. aureus and E. coli were the most susceptible and resistant bacteria to the hot water extract, respectively. In conclusion, the extracts of Auricularia spp. and Termitomyces spp. have shown promising antimicrobial and antioxidant activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.