Investment in SARS-CoV-2 sequencing in Africa over the past year has led to a major increase in the number of sequences generated, now exceeding 100,000 genomes, used to track the pandemic on the continent. Our results show an increase in the number of African countries able to sequence domestically, and highlight that local sequencing enables faster turnaround time and more regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and shed light on the distinct dispersal dynamics of Variants of Concern, particularly Alpha, Beta, Delta, and Omicron, on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve, while the continent faces many emerging and re-emerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century.
Soil-transmitted helminth (STH) infections are common in the tropical and subtropical countries. The burden of disease is highest in endemic areas with limited access to good quality water supply and poor sanitary conditions. Major approaches to control and reduce morbidity caused by worm infections include the periodic deworming of pre-school and school-aged children with anthelminthic drugs. Population-based studies and individual patient management including interventional studies can only be successful when accurate diagnostic techniques are used. The lack of appropriate diagnostic tools providing accurate results concerning both infectious status and intensity of infection—as these two factors vary in regions of low infection intensities—is a major challenge. Currently, available techniques show limited sensitivity and specificity and as such, a combination of several techniques is usually used to diagnose the large variety of parasite species. The objective of this review was to describe the advantages and disadvantages of the different available techniques for the diagnosis of STH infections and to highlight their use in control programs.
Cryptosporidiosis is a major cause of diarrhoeal illness among African children, and is associated with childhood mortality, malnutrition, cognitive development and growth retardation. Cryptosporidium hominis is the dominant pathogen in Africa, and genotyping at the glycoprotein 60 (gp60) gene has revealed a complex distribution of different subtypes across this continent. However, a comprehensive exploration of the metapopulation structure and evolution based on whole-genome data has yet to be performed. Here, we sequenced and analysed the genomes of 26 C. hominis isolates, representing different gp60 subtypes, collected at rural sites in Gabon, Ghana, Madagascar and Tanzania. Phylogenetic and cluster analyses based on single-nucleotide polymorphisms showed that isolates predominantly clustered by their country of origin, irrespective of their gp60 subtype. We found a significant isolation-by-distance signature that shows the importance of local transmission, but we also detected evidence of hybridization between isolates of different geographical regions. We identified 37 outlier genes with exceptionally high nucleotide diversity, and this group is significantly enriched for genes encoding extracellular proteins and signal peptides. Furthermore, these genes are found more often than expected in recombinant regions, and they show a distinct signature of positive or balancing selection. We conclude that: (1) the metapopulation structure of C. hominis can only be accurately captured by whole-genome analyses; (2) local anthroponotic transmission underpins the spread of this pathogen in Africa; (3) hybridization occurs between distinct geographical lineages; and (4) genetic introgression provides novel substrate for positive or balancing selection in genes involved in host–parasite coevolution.
Background: Plasmodium falciparum deficient for hrp2 and hrp3 genes are a threat to malaria management and elimination, since they escape widely used HRP2-based rapid diagnostic tests and treatment. Hrp2/hrp3 deletions are increasingly reported from all malaria endemic regions but are currently only identified by laborious methodologies. Methods: We developed a novel hydrolysis probe-based, quantitative, real-time PCR (4plex qPCR) for detection and discrimination of P. falciparum infection (cytb) and hrp2 and hrp3 gene status, and to control assay validity (btub). A cross-sectional, diagnostic accuracy study was performed in Gabon for assay validation and deletion screening. Findings: In parallel to identification of P. falciparum infection in samples down to 0.05 parasites/μl, the 4plex qPCR enabled specific and valid interrogation of the parasites ś hrp2 and hrp3 genes in one goeven in low parasitemic samples. The assay was precise and robust also when performed in a routine healthcare setting in Gabon. The risk of falsely identifying hrp2 or hrp3 deletion was reduced by 100fold compared to conventional PCR. Evaluation against microscopy was performed on 200 blood samples collected in Gabon: sensitivity and specificity of 4plex qPCR (cytb) were 100% and 80%, respectively. Stringent testing revealed hrp2 deletion in 2 of 95 P. falciparum positive and validated samples. Interpretation: The novel 4plex qPCR is sensitive, accurate and allows resource-efficient rapid screening. Monitoring and mapping of hrp2/hrp3 deletions is required to identify areas where control strategies may need to be adapted to ensure appropriate patient care and ultimately achieve malaria elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.