Human cytomegalovirus is a widespread pathogen of major medical importance. It causes significant morbidity and mortality in immunocompromised individuals, and congenital infections can result in severe disabilities or stillbirth. Development of a vaccine is prioritized, but no candidate is close to release. Although correlations of viral genetic variability with pathogenicity are suspected, knowledge about the strain diversity of the 235-kb genome is still limited. In this study, 96 full-length human cytomegalovirus genomes from clinical isolates were characterized, quadrupling the amount of information available for full-genome analysis. These data provide the first high-resolution map of human cytomegalovirus interhost diversity and evolution. We show that cytomegalovirus is significantly more divergent than all other human herpesviruses and highlight hot spots of diversity in the genome. Importantly, 75% of strains are not genetically intact but contain disruptive mutations in a diverse set of 26 genes, including the immunomodulatory genes UL40 and UL111A. These mutants are independent of culture passage artifacts and circulate in natural populations. Pervasive recombination, which is linked to the widespread occurrence of multiple infections, was found throughout the genome. The recombination density was significantly higher than those of other human herpesviruses and correlated with strain diversity. While the overall effects of strong purifying selection on virus evolution are apparent, evidence of diversifying selection was found in several genes encoding proteins that interact with the host immune system, including UL18, UL40, UL142, and UL147. These residues may present phylogenetic signatures of past and ongoing virus-host interactions. IMPORTANCEHuman cytomegalovirus has the largest genome of all viruses that infect humans. Currently, there is a great interest in establishing associations between genetic variants and strain pathogenicity of this herpesvirus. Since the number of publicly available full-genome sequences is limited, knowledge about strain diversity is highly fragmented and biased toward a small set of loci. Combined with our previous work, we have now contributed 101 complete genome sequences. We have used these data to conduct the first high-resolution analysis of interhost genome diversity, providing an unbiased and comprehensive overview of cytomegalovirus variability. These data are of major value to the development of novel antivirals and a vaccine and to identify potential targets for genotype-phenotype experiments. Furthermore, these data have enabled a thorough study of the evolutionary processes that have shaped cytomegalovirus diversity. Human cytomegalovirus (HCMV), the prototype member of the herpesvirus subfamily Betaherpesvirinae, is a widespread and important pathogen. Seroprevalence in the adult population ranges from 45% to 100% (1). After primary infection, HCMV establishes a lifelong, latent infection in myeloid progenitor cells (2). This virus causes mild to ...
The gut microbiomes of human populations worldwide have many core microbial species in common. However, within a species, some strains can show remarkable population specificity. The question is whether such specificity arises from a shared evolutionary history (codiversification) between humans and their microbes. To test for codiversification of host and microbiota, we analyzed paired gut metagenomes and human genomes for 1225 individuals in Europe, Asia, and Africa, including mothers and their children. Between and within countries, a parallel evolutionary history was evident for humans and their gut microbes. Moreover, species displaying the strongest codiversification independently evolved traits characteristic of host dependency, including reduced genomes and oxygen and temperature sensitivity. These findings all point to the importance of understanding the potential role of population-specific microbial strains in microbiome-mediated disease phenotypes.
BackgroundSub-Saharan Africa carries most of the global burden of schistosomiasis. To optimize disease control and reduce morbidity, precise data are needed for control measures adapted to the local epidemiological situation. The objective of this study is to provide baseline information on schistosomiasis dynamics, including praziquantel (PZQ) treatment outcome in children and young adults living in the vicinity of Lambaréné, Gabon.MethodsEligible volunteers were included into a prospective longitudinal study. Urine filtration technique was used to detect eggs in urine for schistosomiasis diagnosis. Subjects were treated with 60 mg of PZQ once per month for three consecutive months, and the outcome was assessed by cure rate (CR) and egg reduction rate (ERR).ResultsA total of 328 volunteers were enrolled in the study with a mean (± SD) age of 12.2 ± 4.7 years-old. The female-to-male ratio was 0.99. Out of 258 participants in total, 45% had schistosomiasis during the survey and 43% presented with heavy infections. The incidences of haematuria and schistosomiasis were 0.11 and 0.17 person-years, respectively. After the first and third dose of PZQ, overall ERR of 93% and 95% were found, respectively; while the CR were 78% and 88%, respectively. Both ERR (100 vs 88%) and CR (90 vs 68%) were higher among females than males after the first dose. The CR increased for both groups after the third dose to 95% and 80%, respectively. After the first PZQ dose, ERR was higher for heavy compared to light infections (94 vs 89%), while the CR was higher for light than for heavy infections (87 vs 59%). After the third PZQ dose, ERR increased only for light infections to 99%, while CR increased to 98% and 75% for light and for heavy infections, respectively. The reinfection rate assessed at a mean of 44.6 weeks post-treatment was 25%.ConclusionsThe prevalence of schistosomiasis is moderate in communities living in the vicinity of Lambaréné, where a subpopulation with a high risk of reinfection bears most of the burden of the disease. To improve schistosomiasis control in this scenario, we suggest education of these high-risk groups to seek themselves a one-year PZQ treatment.Trial registration clinicaltrials.gov Identifier NCT 02769103. Registered 11 May 2016, retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT02769013
Soil-transmitted helminth (STH) infections are common in the tropical and subtropical countries. The burden of disease is highest in endemic areas with limited access to good quality water supply and poor sanitary conditions. Major approaches to control and reduce morbidity caused by worm infections include the periodic deworming of pre-school and school-aged children with anthelminthic drugs. Population-based studies and individual patient management including interventional studies can only be successful when accurate diagnostic techniques are used. The lack of appropriate diagnostic tools providing accurate results concerning both infectious status and intensity of infection—as these two factors vary in regions of low infection intensities—is a major challenge. Currently, available techniques show limited sensitivity and specificity and as such, a combination of several techniques is usually used to diagnose the large variety of parasite species. The objective of this review was to describe the advantages and disadvantages of the different available techniques for the diagnosis of STH infections and to highlight their use in control programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.