The detection capabilities of single particle inductively coupled plasma-mass spectrometry (spICPMS) with respect to particle size and number concentrations are investigated for the case of silver nanoparticles (ca. 20-80 nm). An iterative algorithm was developed where particle measurement events were distinguished as outliers from the more continuous dissolved ion signal if the measured intensity was more than five times the standard deviation of the whole data set. The optimal dwell time for 40-80 nm particles, limiting both incomplete and multiple particle events, was 5 ms. The smallest detectable particle size (ca. 20 nm) is mainly limited by the overlap of particle events and dissolved signal that increases with noise on both signals. The lowest measurable number concentration is limited by the relative frequency of erroneously identified particle events, a limit that can be reduced by acquiring more data points. Finally, the potential of spICPMS for environmental detection of nanoparticles is demonstrated for a wastewater treatment plant effluent sample.
Abstract-Ecotoxicology research is using many methods for engineered nanomaterials (ENMs), but the collective experience from researchers has not been documented. This paper reports the practical issues for working with ENMs and suggests nano-specific modifications to protocols. The review considers generic practical issues, as well as specific issues for aquatic tests, marine grazers, soil organisms, and bioaccumulation studies. Current procedures for cleaning glassware are adequate, but electrodes are problematic. The maintenance of exposure concentration is challenging, but can be achieved with some ENMs. The need to characterize the media during experiments is identified, but rapid analytical methods are not available to do this. The use of sonication and natural/synthetic dispersants are discussed. Nano-specific biological endpoints may be developed for a tiered monitoring scheme to diagnose ENM exposure or effect. A case study of the algal growth test highlights many small deviations in current regulatory test protocols that are allowed (shaking, lighting, mixing methods), but these should be standardized for ENMs. Invertebrate (Daphnia) tests should account for mechanical toxicity of ENMs. Fish tests should consider semistatic exposure to minimize wastewater and animal husbandry. The inclusion of a benthic test is recommended for the base set of ecotoxicity tests with ENMs. The sensitivity of soil tests needs to be increased for ENMs and shortened for logistics reasons; improvements include using Caenorhabditis elegans, aquatic media, and metabolism endpoints in the plant growth tests. The existing bioaccumulation tests are conceptually flawed and require considerable modification, or a new test, to work for ENMs. Overall, most methodologies need some amendments, and recommendations are made to assist researchers. Environ. Toxicol. Chem. 2012;31:15-31. # 2011 SETAC
Interactions within natural soils have often been neglected when assessing fate and bioavailability of engineered nanomaterials (ENM) in soils. This review combines patchwise ENM research using natural soils with the much wider literature on ENM performed in standard tests or on the fate of colloids in soils, and an analysis of the diverse ENM characteristics determining availability from the soil organisms' perspective to assess the main soil characteristics that determine the fate, speciation, and ultimately bioavailability of ENM in natural soils. Predominantly salinity, texture, pH, concentration, and nature of mobile organic compounds and degree of saturation determine ENM bioavailability.
Nanopesticides or nano plant protection products represent an emerging technological development that, in relation to pesticide use, could offer a range of benefits including increased efficacy, durability, and a reduction in the amounts of active ingredients that need to be used. A number of formulation types have been suggested including emulsions (e.g., nanoemulsions), nanocapsules (e.g., with polymers), and products containing pristine engineered nanoparticles, such as metals, metal oxides, and nanoclays. The increasing interest in the use of nanopesticides raises questions as to how to assess the environmental risk of these materials for regulatory purposes. Here, the current approaches for environmental risk assessment of pesticides are reviewed and the question of whether these approaches are fit for purpose for use on nanopesticides is addressed. Potential adaptations to existing environmental risk assessment tests and procedures for use with nanopesticides are discussed, addressing aspects such as analysis and characterization, environmental fate and exposure assessment, uptake by biota, ecotoxicity, and risk assessment of nanopesticides in aquatic and terrestrial ecosystems. Throughout, the main focus is on assessing whether the presence of the nanoformulation introduces potential differences relative to the conventional active ingredients. The proposed changes in the test methodology, research priorities, and recommendations would facilitate the development of regulatory approaches and a regulatory framework for nanopesticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.