This paper presents an approach to incrementally generating locative expressions. It addresses the issue of combinatorial explosion inherent in the construction of relational context models by: (a) contextually defining the set of objects in the context that may function as a landmark, and (b) sequencing the order in which spatial relations are considered using a cognitively motivated hierarchy of relations, and visual and discourse salience.
The paper shows how Combinatory Categorial Grammar (CCG) can be adapted to take advantage of the extra resourcesensitivity provided by the Categorial Type Logic framework. The resulting reformulation, Multi-Modal CCG, supports lexically specified control over the applicability of combinatory rules, permitting a universal rule component and shedding the need for language-specific restrictions on rules. We discuss some of the linguistic motivation for these changes, define the Multi-Modal CCG system and demonstrate how it works on some basic examples. We furthermore outline some possible extensions and address computational aspects of Multi-Modal CCG.
The paper presents an HRI architecture for human-augmented mapping, which has been implemented and tested on an autonomous mobile robotic platform. Through interaction with a human, the robot can augment its autonomously acquired metric map with qualitative information about locations and objects in the environment. The system implements various interaction strategies observed in independently performed Wizard-of-Oz studies. The paper discusses an ontology-based approach to multi-layered conceptual spatial mapping that provides a common ground for human-robot dialogue. This is achieved by combining acquired knowledge with innate conceptual commonsense knowledge in order to infer new knowledge. The architecture bridges the gap between the rich semantic representations of the meaning expressed by verbal utterances on the one hand and the robot's internal sensor-based world representation on the other. It is thus possible to establish references to spatial areas in a situated dialogue between a human and a robot about their environment. The resulting conceptual descriptions represent qualitative knowledge about locations in the environment that can serve as a basis for achieving a notion of situational awareness.
An approach to dialogue based interaction for resolution of ambiguities encountered as part of Human-Augmented Mapping (HAM) is presented. The paper focuses on issues related to spatial organisation and localisation. The dialogue pattern naturally arises as robots are introduced to novel environments. The paper discusses an approach based on the notion of Questions under Discussion (QUD). The presented approach has been implemented on a mobile platform that has dialogue capabilities and methods for metric SLAM. Experimental results from a pilot study clearly demonstrate that the system can resolve problematic situations.
Categorial grammar has traditionally used the λ-calculus to represent meaning. We present an alternative, dependency-based perspective on linguistic meaning and situate it in the computational setting. This perspective is formalized in terms of hybrid logic and has a rich yet perspicuous propositional ontology that enables a wide variety of semantic phenomena to be represented in a single meaning formalism. Finally, we show how we can couple this formalization to Combinatory Categorial Grammar to produce interpretations compositionally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.