A microbial fuel cell containing a mixed bacterial culture utilizing glucose as carbon source was enriched to investigate power output in relation to glucose dosage. Electron recovery in terms of electricity up to 89% occurred for glucose feeding rates in the range 0.5-3 g l(-1) d(-1), at powers up to 3.6 W m(-2) of electrode surface, a five fold higher power output than reported thus far. This research indicates that microbial electricity generation offers perspectives for optimization.
The most common types of anaerobic digesters for solid wastes have been compared based on biological and technical performance and reliability. Batch systems have the most simple designs and are the least expensive solid waste digesters. They have high potential for application in developing countries. Two-stage systems are the most complex and most expensive systems. Their greatest advantage lies in the equalisation of the organic loading rate in the first stage, allowing a more constant feeding rate of the methanogenic second stage. Two-stage systems with biomass accumulation devices in the second stage display a larger resistance toward toxicants and inhibiting substances such as ammonia. However, the large majority of industrial applications use one-stage systems and these are evenly split between "dry" systems (wastes are digested as received) and "wet" systems (wastes are slurried to about 12% total solids). Regarding biological performance, this study compares the different digester systems in terms of organic loading rates and biogas yields considering differences in input waste composition. As a whole, "dry" designs have proven reliable due to their higher biomass concentration, controlled feeding and spatial niches. Moreover, from a technical viewpoint the "dry" systems are more robust and flexible than "wet' systems.
Anaerobic digestion of solid biowaste generally results in relatively low methane yields of 50-60% of the theoretical maximum. Increased methane recovery from organic waste would lead to reduced handling of digested solids, lower methane emissions to the environment, and higher green energy profits. The objective of this research was to enhance the anaerobic biodegradability and methane yields from different biowastes (food waste, yard waste, and digested biowaste already treated in a full-scale biogas plant (DRANCO, Belgium)) by assessing thermal wet oxidation. The biodegradability of the waste was evaluated by using biochemical methane potential assays and continuous 3-L methane reactors. Wet oxidation temperature and oxygen pressure (T, 185-220 degrees C; O2 pressure, 0-12 bar; t, 15 min) were varied for their effect on total methane yield and digestion kinetics of digested biowaste. Measured methane yields for raw yard waste, wet oxidized yard waste, raw food waste, and wet oxidized food waste were 345, 685, 536, and 571 mL of CH/g of volatile suspended solids, respectively. Higher oxygen pressure during wet oxidation of digested biowaste considerably increased the total methane yield and digestion kinetics and permitted lignin utilization during a subsequent second digestion. The increase of the specific methane yield for the full-scale biogas plant by applying thermal wet oxidation was 35-40%, showing that there is still a considerable amount of methane that can be harvested from anaerobic digested biowaste.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.