We report on spin Hall magnetoresistance (SMR) measurements of Pt Hall bars on the antiferromagnetic NiO(111) single crystal. An SMR with a sign opposite of conventional SMR is observed over a wide range of temperatures as well as magnetic fields stronger than 0.25T. The negative sign of the SMR can be explained by the alignment of magnetic moments being almost perpendicular to the external magnetic field within the easy plane (111) of the antiferromagnet. This correlation of magnetic moment alignment and external magnetic field direction is realized just by the easy-plane nature of the material without the need of any exchange coupling to an additional ferromagnet. The SMR signal strength decreases with increasing temperature, primarily due to the decrease in Néel order by including fluctuations. An increasing magnetic field increases the SMR signal strength as there are less domains and the magnetic moments are more strongly manipulated at high magnetic fields. The SMR is saturated at an applied magnetic field of 6 T resulting in a spin-mixing conductance of ∼ 10 18 Ω −1 m −2 , which is comparable to that of Pt on insulating ferrimagnets such as yttrium iron garnet. An argon plasma treatment doubles the spin-mixing conductance.
In spin-transport experiments with spin currents propagating through an antiferromagnetic (AFM) material, the antiferromagnet is mainly treated as a passive spin conductor not generating nor adding any spin current to the system. The spin current transmissivity of the AFM NiO is affected by magnetic fluctuations, peaking at the Néel temperature and decreasing by lowering the temperature. To study the role of antiferromagnetism in local and nonlocal spin-transport experiments, we send spin currents through NiO of various thicknesses placed on Y 3 Fe 5 O 12 . The spin currents are injected either electrically or by thermal gradients and measured at a wide range of temperatures and magnetic field strengths. The transmissive role is reflected in the sign change of the local electrically injected signals and the decrease in signal strength of all other signals by lowering the temperature. The thermally generated signals, however, show an additional upturn below 100 K that is unaffected by an increased NiO thickness. A change in the thermal conductivity could affect these signals. The temperature and magnetic field dependence are similar to those for bulk NiO, indicating that NiO itself contributes to thermally induced spin currents.
We report on spin Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) in a single crystal of the rare-earth antiferromagnet DyFeO 3 with a thin Pt film contact. The angular shape and symmetry of the SMR at elevated temperatures reflect the antiferromagnetic order of the Fe 3+ moments as governed by the Zeeman energy, the magnetocrystalline anisotropy, and the Dzyaloshinskii-Moriya interaction. We interpret the observed linear dependence of the signal on the magnetic field strength as evidence for field-induced order of the Dy 3+ moments up to room temperature. At and below the Morin temperature of 50 K, the SMR monitors the spinreorientation phase transition of Fe 3+ spins. Below 23 K, additional features emerge that persist below 4 K, the ordering temperature of the Dy 3+ magnetic sublattice. We conclude that the combination of SMR and SSE is a simple and efficient tool to study spin reorientation phase transitions and sublattice magnetizations.
CaFe2O4 is a uniaxial antiferromagnet displaying two coexisting magnetic orderings, A and B, characterized by ↑↑↓↓ and ↑↓↑↓ spin modulation, respectively, and the emergence of a net magnetization in a limited temperature range, which is not yet understood. The spin Hall magnetoresistance (SMR) is probed at the interface between Pt and CaFe2O4 and the crystallographic domain structure of thin film samples is exploited to perform single‐ and multi‐domain scale measurements. The SMR response, upon rotating the magnetic field along three orthogonal planes, shows little effect of the strong magnetocrystalline and shape anisotropies. Together with the response to a varying magnetic field strength, the modulations in the SMR signal allow to extract two contributions: one corresponds to the long‐range antiferromagnetic ordering, supporting a single ground state scenario; while the second contribution originates from uncompensated, non‐interacting spins. These are expected to exist at the antiphase boundaries between antiferromagnetic domains. Here, it is shown that these are also uncoupled from the antiferromagnetic ordering. Nonetheless, the long range correlations that emerge in the proximity of the critical antiferromagnetic transition can give rise to ordering of the uncompensated spins and be responsible for the net magnetization observed in this antiferromagnet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.