Although the liquid-crystal research is well established in science, there are newly emerging exciting systems, that deserve extensive basic studies. One of these areas is the research of the bent-shaped molecules (so-called "banana liquid crystals"), which have delicate chirality and polarity properties. In this paper we show that these materials also have very unusual rheological features, such as the formation of stable fluid fibers and bridges. Under electric fields, these objects present striking mechanical effects, such as horizontal and transversal vibrations. Studies indicate that the research of banana-liquid-crystal fibers may lead to new type of artificial muscle systems.
We report rheological, X-ray, and dielectric investigations on a chromonic liquid-crystalline system formed by aqueous solutions of a food coloring agent, Sunset Yellow, in the absence and upon addition of salt. The salt-concentration dependence of the steady-state viscosity at low shear rates has a non-monotonic variation and is qualitatively similar to the behavior seen in wormlike micellar systems, a surprising result since chromonic systems are expected to be non-micellar in character. More interestingly, for a particular low concentration of the salt (20 mM), the viscosity increases by 3 orders of magnitude in comparison with that of the pure chromonic material. The dynamic (oscillatory) rheological data bring out features which can be described in terms of a microstructure formation. X-ray and dielectric studies show that certain characters of the aggregates formed by the Sunset Yellow molecules are not altered by the addition of salt.
Controllable manipulation of self-organized dynamic superstructures of functional molecular materials by external stimuli is an enabling enterprise. Herein, we have developed a thermally driven, self-organized helical superstructure, i.e., thermoresponsive cholesteric liquid crystal (CLC), by integrating a judiciously chosen thermoresponsive chiral molecular switch into an achiral liquid crystalline medium. The CLC in lying state, in both planar and twisted nematic cells, exhibits reversible in-plane orthogonal switching of its helical axis in response to the combined effect of temperature and electric field. Consequently, the direction of the cholesteric grating has been observed to undergo 90° switching in a single cell, enabling non-mechanical beam steering along two orthogonal directions. The ability to reversibly switch the cholesteric gartings along perpendicular directions by appropriately adjusting temperature and electric field strength could facilitate their applications in 2D beam steering, spectrum scanning, optoelectronics and beyond.
Precise x-ray measurements of the tilt angle near the smectic-^4-smectic-C* tricritical point show clear evidence of mean-field to tricritical crossover behavior; the mean-field region shrinks to zero at the tricritical point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.