BackgroundThe present study involves diversity and bioactivity of the endophytic fungal community from Catharanthus roseus inhabiting the coastal region. This study has been conducted hypothesizing that the microbial communities in the coastal regions would tolerate a range of abiotic stress such as salinity, humidity, temperature and soil composition, and it may produce new metabolites, which may possess bioactive property. Therefore in the current study, the cytotoxicity and free radical scavenging potential of the fungal organic extracts have been investigated. Moreover, the apoptotic and the antioxidant potential of the fungus that exhibited the best activity in preliminary screening has also been demonstrated.ResultsTwenty endophytic fungal isolates were obtained from different parts of the plant, and identified using internal transcribed spacer region analysis. Based on the colonization frequency, the dominant genera were found to be Colletotrichum, Alternaria and Chaetomium with colonization frequency % of 8.66, 7.00 and 6.33, respectively. It was observed that the species diversity and richness was the highest in bark followed by leaf and stem regions of the plant. On screening the fungal ethyl acetate extracts for cytotoxicity against the HeLa cells, the Chaetomium nigricolor extract exhibited potent cytotoxic activity of 92.20% at 100 μg mL− 1 concentration. Comparison between the different organic extracts (ethyl acetate, chloroform, dichloromethane and hexane) of Chaetomium nigricolor mycelial and culture filtrate, it was observed that the mycelial as well the culture filtrate ethyl acetate extracts and the culture filtrate hexane extract showed significant cytotoxic potential against the HeLa and MCF-7 cells, respectively. The apoptotic- and mitochondrial membrane depolarisation-induction potential of the Chaetomium nigricolor ethyl acetate extract has also been demonstrated in this study. Further the screening of antioxidant potential of the ethyl acetate fungal extracts using DPPH scavenging assay showed that Chaetomium nigricolor extract exhibited potential activity with a significant EC50 value of 22 μg mL− 1. The ethyl acetate extract of Chaetomium nigricolor also exhibited superoxide radical scavenging potential.ConclusionThese results indicated that diverse endophytic fungal population inhabits Catharanthus roseus. One of the fungal isolate Chaetomium nigricolor exhibited significant cytotoxic, apoptotic and antioxidant potential.Electronic supplementary materialThe online version of this article (10.1186/s12866-019-1386-x) contains supplementary material, which is available to authorized users.
Hypoxia is considered a key factor in cellular differentiation and proliferation, particularly during embryonic development; the process of early neurogenesis also occurs under hypoxic conditions. Apart from these developmental processes, hypoxia preconditioning or mild hypoxic sensitization develops resistance against ischemic stroke in deteriorating tissues. We therefore hypothesized that neurons resulting from hypoxia-regulated neuronal differentiation could be the best choice for treating brain ischemia, which contributes to neurodegeneration. In this study, infrapatellar fat pad (IFP), an adipose tissue present beneath the knee joint, was used as the stem cell source. IFP-derived stem cells (IFPSCs) are totally adherent and are mesenchymal stem cells. The transdifferentiation protocol involved hypoxia preconditioning, the use of hypoxic-conditioned medium, and maintenance in maturation medium with α-lipoic acid. The differentiated cells were characterized using microscopy, reverse transcription PCR, real time PCR, and immunocytochemistry. To evaluate the epigenetic reprogramming of IFPSCs to become neuron-like cells, methylation microarrays were performed. Hypoxia preconditioning stabilized and allowed for the translocation of hypoxia inducible factor 1α into the nucleus and induced achaete-scute homologue 1 and doublecortin expression. Following induction, the resultant cells expressed neuronal markers neuron-specific enolase, neurofilament-light chain, growth associated protein 43, synaptosome associated protein 25, and β-III tubulin. The differentiated neural-lineage cells had functional gene expression pertaining to neurotransmitters, their release, and their receptors. The molecular signaling mechanisms regulated developmental neurogenesis. Furthermore, the in vitro physiological condition regulated neurotransmitter respecification or switching during IFPSC differentiation to neurons. Thus, differentiated neurons were fabricated against the ischemic region to treat neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.