The European Space Agency’s Sentinel satellites have laid the foundation for global land use land cover (LULC) mapping with unprecedented detail at 10 m resolution. We present a cross-comparison and accuracy assessment of Google’s Dynamic World (DW), ESA’s World Cover (WC) and Esri’s Land Cover (Esri) products for the first time in order to inform the adoption and application of these maps going forward. For the year 2020, the three global LULC maps show strong spatial correspondence (i.e., near-equal area estimates) for water, built area, trees and crop LULC classes. However, relative to one another, WC is biased towards over-estimating grass cover, Esri towards shrub and scrub cover and DW towards snow and ice. Using global ground truth data with a minimum mapping unit of 250 m2, we found that Esri had the highest overall accuracy (75%) compared to DW (72%) and WC (65%). Across all global maps, water was the most accurately mapped class (92%), followed by built area (83%), tree cover (81%) and crops (78%), particularly in biomes characterized by temperate and boreal forests. The classes with the lowest accuracies, particularly in the tundra biome, included shrub and scrub (47%), grass (34%), bare ground (57%) and flooded vegetation (53%). When using European ground truth data from LUCAS (Land Use/Cover Area Frame Survey) with a minimum mapping unit of <100 m2, we found that WC had the highest accuracy (71%) compared to DW (66%) and Esri (63%), highlighting the ability of WC to resolve landscape elements with more detail compared to DW and Esri. Although not analyzed in our study, we discuss the relative advantages of DW due to its frequent and near real-time data delivery of both categorical predictions and class probability scores. We recommend that the use of global LULC products should involve critical evaluation of their suitability with respect to the application purpose, such as aggregate changes in ecosystem accounting versus site-specific change detection in monitoring, considering trade-offs between thematic resolution, global versus. local accuracy, class-specific biases and whether change analysis is necessary. We also emphasize the importance of not estimating areas from pixel-counting alone but adopting best practices in design-based inference and area estimation that quantify uncertainty for a given study area.
Diverse freshwater biological communities are threatened by invasive aquatic alien plant (IAAP) invasions and consequently, cost countries millions to manage. The effective management of these IAAP invasions necessitates their frequent and reliable monitoring across a broad extent and over a long-term. Here, we introduce and apply a monitoring approach that meet these criteria and is based on a three-stage hierarchical classification to firstly detect water, then aquatic vegetation and finally water hyacinth (Pontederia crassipes, previously Eichhornia crassipes), the most damaging IAAP species within many regions of the world. Our approach circumvents many challenges that restricted previous satellite-based water hyacinth monitoring attempts to smaller study areas. The method is executable on Google Earth Engine (GEE) extemporaneously and utilizes free, medium resolution (10–30 m) multispectral Earth Observation (EO) data from either Landsat-8 or Sentinel-2. The automated workflow employs a novel simple thresholding approach to obtain reliable boundaries for open-water, which are then used to limit the area for aquatic vegetation detection. Subsequently, a random forest modelling approach is used to discriminate water hyacinth from other detected aquatic vegetation using the eight most important variables. This study represents the first national scale EO-derived water hyacinth distribution map. Based on our model, it is estimated that this pervasive IAAP covered 417.74 km2 across South Africa in 2013. Additionally, we show encouraging results for utilizing the automatically derived aquatic vegetation masks to fit and evaluate a convolutional neural network-based semantic segmentation model, removing the need for detection of surface water extents that may not always be available at the required spatio-temporal resolution or accuracy. The water hyacinth species discrimination has a 0.80, or greater, overall accuracy (0.93), F1-score (0.87) and Matthews correlation coefficient (0.80) based on 98 widely distributed field sites across South Africa. The results suggest that the introduced workflow is suitable for monitoring changes in the extent of open water, aquatic vegetation, and water hyacinth for individual waterbodies or across national extents. The GEE code can be accessed here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.