According to the World Health Organisation, as of 2019, globally around 50 million people suffer from dementia, with approximately another 10 million getting added to the list every year, wherein Alzheimer’s disease (AD) stands responsible for almost a whopping 60–70% for the existing number of cases. Alzheimer’s disease is one of the progressive, cognitive-declining, age-dependent, neurodegenerative diseases which is distinguished by histopathological symptoms, such as formation of amyloid plaque, senile plaque, neurofibrillary tangles, etc. Majorly four vital transcripts are identified in the AD complications which include Amyloid precursor protein (APP), Apolipoprotein E (ApoE), and two multi-pass transmembrane domain proteins—Presenilin 1 and 2. In addition, the formation of the abnormal filaments such as amyloid beta (Aβ) and tau and their tangling with some necessary factors contributing to the formation of plaques, neuroinflammation, and apoptosis which in turn leads to the emergence of AD. Although multiple molecular mechanisms have been elucidated so far, they are still counted as hypotheses ending with neuronal death on the basal forebrain and hippocampal area which results in AD. This review article is aimed at addressing the overview of the molecular mechanisms surrounding AD and the functional forms of the genes associated with it.
New drug preparations of natural origin are in need due to the numerous side effects and resistance development through the continuous and uncontrolled use of synthetic drugs. Lichens are reported to have manifold biological activities and in this study, antioxidant, hypolipidemic and cytotoxic potential of Parmelia perlata were assessed. Methanolic extract of P. perlata was prepared and used in DPPH assay, total phenolic content and total antioxidant potential assays. In vitro anti-cholesterol and cytotoxic assay using HCT 116 cell lines were performed. The results revealed that P. perlata contain high phenolic contents and antioxidant potential. Simvastatin was used as standard drug and the extracts demonstrated 48% anti-cholesterol activity. MTT assay using colon cancer cell lines (HCT 116) produced dose dependent cytotoxic effect with an IC50 value of 202.1 µg ml -1 .
Methanolic extract from flaxseeds was investigated for its effect on anti-cholesterol and antioxidant activity. In vitro anti-cholesterol activity was measured by cholesterol enzymatic endpoint method using simvastatin as positive control. The total amount of phenolic compounds was determined spectrophotometrically and the results were expressed as Gallic Acid Equivalent (GAE gG 1). Antioxidant activity of flaxseeds in vitro was measured in terms of DPPH free radical scavenging and total antioxidant potential assay. Increasing anti-cholesterol activity by flaxseeds was observed up to 20 min and a maximum inhibition was found as 93.04%, which was comparable to the anti-hyperlipidemic drug simvastatin (95.1%). Phenolic compound content of flaxseeds was found as 0.059 mg GAE gG 1 and antioxidant potential was 1.037 mg mLG 1. Lower DPPH free radical scavenging activity was observed after 30 min of incubation. The results indicated that flaxseed might reduce or control the cholesterol levels and oxidative damage and it is apparent that flaxseeds could contribute to new formulations with potential anti-cholesterol and antioxidant effects.
Polycyclic aromatic hydrocarbons (PAHs) are common environmental pollutants and biodegradation using microorganisms is the preferred and major route of PAH removal from contaminated environments. This study investigated the bacterial degradation of petrol and diesel in liquid media that were isolated from oil contaminated soils by enrichment technique. The isolates could use petrol and diesel as their sole carbon and energy source in Bushnell Hass Mineral Salts (BHMS) medium at 2% (v/v) concentration. A total of eight isolates were selected and characterized by using a variety of phenotypic and morphologic properties. Two isolates each showed highest growth in petrol and diesel containing media during screening were selected and characterized using 16S RNA sequencing. Molecular identification of the isolates assigned them to Achromobacter sp. and Pseudomonas aeruginosa. The selected isolates degraded petrol and diesel up to 31.9% and 34.4% respectively. This study indicates that the contaminated soil samples contain a diverse population of PAH-degrading bacteria and the use of Achromobacter sp. and Pseduomonas aeruginosa has the potential for bioremediation of PAH contaminated sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.