Lateral superlattices have attracted major interest as this may allow one to modify spectra of two dimensional (2D) electron systems and, ultimately, create materials with tailored electronic properties 1-8 . Previously, it proved difficult to realize superlattices with sufficiently short periodicity and weak disorder, and most of the observed features could be explained in terms of commensurate cyclotron orbits 1-4 . Evidence for the formation of superlattice minibands (so called Hofstadter's butterfly 9 ) has been limited to the observation of new low-field oscillations 5 and an internal structure within Landau levels 6-8 . Here we report transport properties of graphene placed on a boron nitride substrate and accurately aligned along its crystallographic directions. The substrate's moiré potential 10-12 leads to profound changes in graphene's electronic spectrum. Second-generation Dirac points 13-22 appear as pronounced peaks in resistivity accompanied by reversal of the Hall effect. The latter indicates that the sign of the effective mass changes within graphene's conduction and valence bands. Quantizing magnetic fields lead to Zak-type cloning 23 of the third generation of Dirac points that are observed as numerous neutrality points in fields where a unit fraction of the flux quantum pierces the superlattice unit cell. Graphene superlattices open a venue to study the rich physics expected for incommensurable quantum systems 7-9,22-24 and illustrate the possibility to controllably modify electronic spectra of 2D atomic crystals by using their crystallographic alignment within van der Waals heterostuctures 25 .Since the first observation of Weiss oscillations 1,2 , 2D electronic systems subjected to a periodic potential have been studied in great detail [3][4][5][6][7][8] . The advent of graphene has rapidly sparked interest in its superlattices, too [13][14][15][16][17][18][19][20][21][22] . The principal novelty in this case is the Dirac-like spectrum and the fact that charge carriers are not buried deep under the surface, allowing a relatively strong superlattice potential on a true nanometer scale. One promising avenue for making nanoscale graphene superlattices is the use of a potential induced by another crystal. For example, graphene placed on top of graphite or hexagonal boron nitride (hBN) exhibits a moiré pattern [10][11][12]26 , and graphene's tunneling density of states becomes strongly modified 12,26 indicating the formation of superlattice minibands. The spectral reconstruction occurs near the edges of superlattice's Brillouin zone (SBZ) that are characterized by wavevector G =4/ D and energy E S =v F G/2 (D is the superlattice period and v F graphene's Fermi velocity) 12,22 .To observe moiré minibands in transport properties, graphene has to be doped so that the Fermi energy reaches the reconstructed part of the spectrum. This imposes severe constraints on the misalignment angle of graphene relatively to hBN. Indeed, D is given by and the 1.8% difference between the two lattice constants ...
A decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere. Carrier mobilities are found to exceed 10 cm V s and 10 cm V s at room and liquid-helium temperatures, respectively, allowing the observation of the fully developed quantum Hall effect. The conduction electrons occupy a single 2D subband and have a small effective mass. Photoluminescence spectroscopy reveals that the bandgap increases by more than 0.5 eV with decreasing the thickness from bulk to bilayer InSe. The band-edge optical response vanishes in monolayer InSe, which is attributed to the monolayer's mirror-plane symmetry. Encapsulated 2D InSe expands the family of graphene-like semiconductors and, in terms of quality, is competitive with atomically thin dichalcogenides and black phosphorus.
When a crystal is subjected to a periodic potential, under certain circumstances (such as when the period of the potential is close to the crystal periodicity; the potential is strong enough, etc.) it might adjust itself to follow the periodicity of the potential, resulting in a, so called, commensurate state 1-3 .Such commensurate-incommensurate transitions are ubiquitous phenomena in many areas of condensed matter physics: from magnetism and dislocations in crystals, to vortices in superconductors, and atomic layers adsorbed on a crystalline surface 1 . Of particular interest might be the properties of topological defects between the two commensurate phases: solitons 2,4 , domain walls 1 , and dislocation walls 5-7 . Here we report a commensurate-incommensurate transition for graphene on top of hexagonal boron nitride (hBN) 8,9 . Depending on the rotational angle between the two hexagonal lattices, graphene can either stretch to adjust to a slightly different hBN periodicity (the commensurate state found for small rotational angles) or exhibit little adjustment (the incommensurate state). In the commensurate state, areas with matching lattice constants are separated by domain walls that accumulate the resulting strain. Such soliton-like objects present significant fundamental interest 1 , and their presence might explain recent observations when the electronic, optical, Raman and other properties of graphene-hBN heterostructures have been notably altered 10 .
Many layered materials can be cleaved down to individual atomic planes, similar to graphene, but only a small minority of them are stable under ambient conditions. The rest react and decompose in air, which has severely hindered their investigation and potential applications. Here we introduce a remedial approach based on cleavage, transfer, alignment, and encapsulation of air-sensitive crystals, all inside a controlled inert atmosphere. To illustrate the technology, we choose two archetypal two-dimensional crystals that are of intense scientific interest but are unstable in air: black phosphorus and niobium diselenide. Our field-effect devices made from their monolayers are conductive and fully stable under ambient conditions, which is in contrast to the counterparts processed in air. NbSe2 remains superconducting down to the monolayer thickness. Starting with a trilayer, phosphorene devices reach sufficiently high mobilities to exhibit Landau quantization. The approach offers a venue to significantly expand the range of experimentally accessible two-dimensional crystals and their heterostructures.
In this work, we use Raman spectroscopy as a nondestructive and rapid technique for probing the van der Waals (vdW) forces acting between two atomically thin crystals, where one is a transition metal dichalcogenide (TMDC). In this work, MoS2 is used as a Raman probe: we show that its two Raman-active phonon modes can provide information on the interaction between the two crystals. In particular, the in-plane vibration (E2g(1)) provides information on the in-plane strain, while the out-of-plane mode (A1g) gives evidence for the quality of the interfacial contact. We show that a vdW contact with MoS2 is characterized by a blue shift of +2 cm(-1) of the A1g peak. In the case of a MoS2/graphene heterostructure, the vdW contact is also characterized by a shift of +14 cm(-1) of the 2D peak of graphene. Our approach offers a very simple, nondestructive, and fast method to characterize the quality of the interface of heterostructures containing atomically thick TMDC crystals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.