Background Acetaminophen (APAP) is a worldwide antipyretic as well as an analgesic medication. It has been extensively utilized during the outbreak of coronavirus 2019 (COVID-19). APAP misuse would lead to liver injury. Diacerein (DIA), an anthraquinone derivative, has antioxidant and inflammatory properties. Hence, this study attempted to evaluate the impact of DIA treatment on liver injury induced by APAP and its influence on nuclear factor-κB (NF-κB) /toll-like receptor 4 (TLR4)/high mobility group box-1(HMGB-1) signaling as well as the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression. Methods Male albino rats received 25 as well as 50 mg/kg/day DIA orally for seven days. One hour after the last administration, rats received APAP (1gm/kg, orally). For histopathological analysis, liver tissues and blood were collected, immunohistochemical (IHC) assay, biochemical assay, as well as quantitative real-time polymerase chain reaction (qRT-PCR). Results DIA markedly reduced liver injury markers and ameliorated histopathological changes. Moreover, DIA dose-dependently alleviated oxidative stress status caused by APAP administration along with inflammatory markers, including the level of interleukin-1 beta (IL-1β), myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6). Furthermore, DIA downregulated protein levels as well as mRNA of HMGB-1, TLR4, NF-κB p65 expression, and enhanced PPAR-γ expression. Moreover, DIA ameliorated apoptotic (Bax) and caspase-3 expressions and increased the anti-apoptotic (Bcl2) expression. Conclusions This study demonstrated that DIA exerts anti-apoptotic, anti-inflammatory, and antioxidant properties against liver injury induced by APAP that is attributed to inhibition of the HMGB1/TLR4/NF-κB pathway, besides upregulation of the expression of PPAR-γ.
Background Fluoxetine (FLX) has been widely used as first-line treatment in cases of depression and other neuropsychiatric disorders. Although its safety has been approved, the use of FLX was associated with liver injury and chronic liver disease. Vinpocetine (Vinpo), a nootropic drug, possesses antioxidant and anti-inflammatory effects. Objective This study aimed to evaluate the protective effects of Vinpo on FLX-induced liver damage pointing to the role of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and nuclear factor erythroid 2-related factor 2 (Nrf2). Methods Rats were randomized to four groups: control group, Vinpo group (20 mg/kg/day; orally), FLX group (10 mg/kg/day; orally), and Vinpo + FLX group. Results FLX-induced liver damage was evidenced through elevated liver function biomarkers and induced hepatic histopathological changes. Concurrent Vinpo treatment resulted in a significant decrease in hepatotoxicity biomarkers and histopathological alterations. FLX-induced oxidative stress and inflammation were attenuated by Vinpo. In addition, Vinpo attenuated the hepatic NRF2 and HO-1 levels and up-regulated PPAR-γ expression. Moreover, FLX elevated Bcl-2-associated X protein (Bax) mRNA expression and decreased B-cell lymphoma 2 (Bcl2) mRNA expression were markedly reversed by Vinpo. Conclusion Vinpo possesses ameliorative effects against FLX-induced liver injury in rats. This effect may be due to attenuation of oxidative stress and inflammation, in addition to upregulation of PPAR-γ expression.
Contrast medium (CM) is a chemical substance that is used for imaging anatomical boundaries and to explore normal and abnormal physiological findings; the use of CM was associated with kidney injury and acute renal failure. Melatonin (M) possesses antioxidant, anti-inflammatory, and antiapoptotic effects in addition to autophagy modulation. This study aimed to investigate the protective effect of M against contrast-induced nephropathy (CIN) and its impact on the crosstalk between inflammasome, apoptosis, and autophagy in CIN. Male albino rats received M (10, 20, and 40 mg/kg/day, intraperitoneally) for 3 days. One hour after the last administration, rats were subjected to CIN induction (10 mg/kg indomethacin, double doses of l-NAME 10 mg/kg, i.v., and meglumine diatrizoate 60% 6 mL/kg, i.v.). CIN-induced kidney damage was evidenced through elevated kidney function biomarkers and induced renal histopathological changes. Pretreatment with M caused a significant decrease in nephrotoxicity biomarkers and histopathological alterations. Moreover, CIN-induced oxidative stress, NLRP3 inflammasome, and apoptosis were attenuated by M. Furthermore, M modulates autophagy in CIN rats. M inhibits CIN-induced NLRP3-inflammasome activation and apoptosis as well as enhances autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.