Many lakes in boreal and arctic regions have high concentrations of CDOM (coloured dissolved organic matter). Remote sensing of such lakes is complicated due to very low water leaving signals. There are extreme (black) lakes where the water reflectance values are negligible in almost entire visible part of spectrum (400-700 nm) due to the absorption by CDOM. In these lakes, the only water-leaving signal detectable by remote sensing sensors occurs as two peaks-near 710 nm and 810 nm. The first peak has been widely used in remote sensing of eutrophic waters for more than two decades. We show on the example of field radiometry data collected in Estonian and Swedish lakes that the height of the 810 nm peak can also be used in retrieving water constituents from remote sensing data. This is important especially in black lakes where the height of the 710 nm peak is still affected by CDOM. We have shown that the 810 nm peak can be used also in remote sensing of a wide variety of lakes. The 810 nm peak is caused by combined effect of slight decrease in absorption by water molecules and backscattering from particulate material in the water. Phytoplankton was the dominant particulate material in most of the studied lakes. Therefore, the height of the 810 peak was in good correlation with all proxies of phytoplankton biomass-chlorophyll-a (R 2 = 0.77), total suspended matter (R 2 = 0.70), and suspended particulate organic matter (R 2 = 0.68). There was no correlation between the peak height and the suspended particulate inorganic matter. Satellite sensors with sufficient spatial and radiometric resolution for mapping lake water quality (Landsat 8 OLI and Sentinel-2 MSI) were launched recently. In order to test whether these satellites can capture the 810 nm peak we simulated the spectral performance of these two satellites from field radiometry data. Actual satellite imagery from a black lake was also used to study whether these sensors can detect the peak despite their band configuration. Sentinel 2 MSI has a nearly perfectly positioned band at 705 nm to characterize the 700-720 nm peak. We found that the MSI 783 nm band can be used to detect the 810 nm peak despite the location of this band is not in perfect to capture the peak.
Bathymetry estimated from optical satellite imagery has been increasingly implemented as an alternative to traditional bathymetric survey techniques. The availability of new sensors such as Sentinel-2 with improved spatial and temporal resolution, in comparison with previous optical sensors, offers innovative capabilities for bathymetry derivation. This study presents an assessment of the fit between satellite data and the underlying models in the most widely used empirical algorithms: the linear band model and the log-transformed band ratio model using Sentinel-2A data. Both models were tested in two study areas of the Irish coast with different morphological and environmental conditions. Results showed that the linear band model fitted better than the log-transformed band ratio model providing coefficient of determination values, R 2 , between 0.83 and 0.88 (0 m-10 m) for the five images considered in the study. The closest fit was found in the depth range 2 m-6 m. Atmospheric correction, bottom type influence, and water column conditions proved to be key factors in the bathymetric derivation using these satellite datasets.
Optical satellite data is an efficient and complementary method to hydrographic surveys for deriving bathymetry in shallow coastal waters. Empirical approaches (in particular, the models of Stumpf and Lyzenga) provide a practical methodology to derive bathymetric information from remote sensing. Recent studies, however, have focused on enhancing the performance of such empirical approaches by extending them via spatial information. In this study, the relationship between multibeam depth and Sentinel-2 image bands was analyzed in an optically complex environment using the spatial predictor of kriging with an external drift (KED), where its external drift component was estimated: a) by a ratio of log-transformed bands based on Stumpf's model (KED_S) and b) by a log-linear transform based on Lyzenga's model (KED_L). Through the calibration of KED models, the study objectives were: 1) to better understand the empirical relationship between Sentinel-2 multispectral satellite reflectance and depth, 2) to test the robustness of KED to derive bathymetry in a multitemporal series of Sentinel-2 images and multibeam data, and 3) to compare the performance of KED against the existing non-spatial models described by Stumpf et al. and Lyzenga. Results showed that KED could improve prediction accuracy with a decrease in RMSE of 89% and 88%, and an increase in R 2 of 27% and 14%, over the Stumpf and Lyzenga models, respectively. The decrease in RMSE provides a worthwhile improvement in accuracy, where results showed effective prediction of depth up to 6 m. However, the presence of higher concentrations of suspended materials, especially river plumes, can reduce this threshold to 4 m. As would be expected, prediction accuracy could be improved through the removal of outliers, which were mainly located in the channel of the river, areas influenced by the river plume, abrupt topography, but also very shallow areas close to the shoreline. These areas have been identified as conflictive zones where satellite-derived bathymetry can be compromised.
Satellite derived bathymetry (SDB) enables rapid mapping of large coastal areas through measurement of optical penetration of the water column. The resolution of bathymetric mapping and achievable horizontal and vertical accuracies vary but generally, all SDB outputs are constrained by sensor type, water quality and other environmental conditions. Efforts to improve accuracy include physics-based methods (similar to radiative transfer models e.g. for atmospheric/vegetation studies) or detailed in-situ sampling of the seabed and water column, but the spatial component of SDB measurements is often under-utilised in SDB workflows despite promising results suggesting potential to improve accuracy significantly. In this study, a selection of satellite datasets (Landsat 8, RapidEye and Pleiades) at different spatial and spectral resolutions were tested using a log ratio transform to derive bathymetry in an Atlantic coastal embayment. A series of non-spatial and spatial linear analyses were then conducted and their influence on SDB prediction accuracy was assessed in addition to the significance of each model's parameters. Landsat 8 (30 m pixel size) performed relatively weak with the non-spatial model, but showed the best results with the spatial model. However, the highest spatial resolution imagery used – Pleiades (2 m pixel size) showed good results across both non-spatial and spatial models which suggests a suitability for SDB prediction at a higher spatial resolution than the others. In all cases, the spatial models were able to constrain the prediction differences at increased water depths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.