Emerging evidence indicates that RUNX3 is a candidate tumor suppressor in several types of human tumors including hepatocellular carcinoma (HCC). However, the correlation between RUNX3 hypermethylation and incidence of HCC remains unclear. Here, we conducted a systematic review and meta-analysis aiming to comprehensively assess the potential role of RUNX3 hypermethylation in the pathogenesis of HCC. A detailed literature search was made from PubMed, EMBASE, and ISI web of knowledge to identify studies for related research publications. Methodological quality of the studies was also evaluated. The data were extracted and assessed by two reviewers independently. Analysis of pooled data was performed. Odds ratio (OR) was calculated and summarized, respectively. Final analysis of 821 HCC patients from 14 eligible studies was performed. We observed that RUNX3 hypermethylation was significantly higher in HCC than in normal liver tissue, the pooled OR from eight studies including 382 HCC and 161 normal liver tissue (OR = 39.32, 95 % confidence interval (CI) = 13.72-112.7, p < 0.00001). The pooled analysis showed significantly increased OR of RUNX3 hypermethylation (OR = 5.4, 95 % CI = 2.06-14.17, p < 0.00001) in HCC tissues and non-tumor liver tissues. In addition, statistically significant OR of RUNX3 hypermethylation was obtained from non-tumorous liver tissue of HCC patients and normal liver tissue (OR = 12.57, 95 % CI = 3.56-44.35, p < 0.0001). The results of this meta-analysis suggest that RUNX3 hypermethylation may be implicated in the pathogenesis of HCC. Thus, detection of RUNX3 hypermethylation may be a helpful and valuable biomarker for diagnosis of HCC.
Most of chronic HBV carriers in ITP have their CM syndrome, and the most common types are SKAD, LQD. This study suggests that the natural history may be improved through breaking the state of immune tolerance or shorten the time of ITP by strengthening Spleen-Kidney and reliving Liver qi.
BackgroundDysfunctional metabolisms are contributed to LPS/GALN-induced hepatitis. However, whether Hedyotis diffusa (HD) employs metabolic strategies against hepatitis is unknown.MethodsWe use the cytokines expression, levels of serum alanine transaminase and aspartate transaminase, survival and histological analysis to measure the effect of decoction of HD on acute severe hepatitis of mouse induced by LPS/GALN. Meanwhile, we utilize GC/MS-based metabolomics to characterize the variation of metabolomes.ResultsThe present study shows the relieving liver damage in HD decoction-treated mice. Metabolic category using differential metabolites indicates the lower percentage of carbohydrates in LPS/GALN + HD group than LPS/GALN group, revealing the value of carbohydrate metabolism in HD decoction-administrated mouse liver. Further pathway enrichment analysis proposes that citrate cycle, galactose metabolism, and starch and sucrose metabolism are three important carbohydrate metabolisms that involve in the protective effect of decoction of HD during acute hepatitis. Furthermore, other important enrichment pathways are biosynthesis of unsaturated fatty acids, alanine, aspartate and glutamate metabolism, and arginine and proline metabolism. Fatty acids or amino acids involved in above-mentioned pathways are also detected in high loading distribution on IC01 and IC02, thereby manifesting the significance of these metabolites. Other key metabolites detect in ICA analysis were cholesterol, lactic acid and tryptophan.ConclusionsThe variation tendency of above-mentioned metabolites is totally consistent with the protective nature of decoction of HD. These findings give a viewpoint that HD decoction-effected metabolic strategies are linked to underlying mechanisms of decoction of HD and highlight the importance of metabolic mechanisms against hepatitis.Electronic supplementary materialThe online version of this article (10.1186/s13020-017-0159-4) contains supplementary material, which is available to authorized users.
The aim of this study is to investigate traditional Chinese medicine syndrome (TCMS) patterns and their association with hepatitis B surface antigen (HBsAg) levels during the natural history of chronic hepatitis B virus infection (CHB). Patients were categorized according to the phase of CHB, as follows: immune tolerance (ITP); immune clearance (ICP); low or nonreplication (LRP); reactivation (RAP); hepatic cirrhosis (HC); and primary liver cancer (PLC). TCMS patterns were classified among the following types: spleen-kidney deficiency (SKD); liver-qi depression (LQD); damp-heat in liver-gallbladder (LGDH); liver-kidney deficiency (LKD); and blood stasis blocking collateral (BSBC). HBsAg levels and other serological indicators were quantified for all patients and their association with TCMS was statistically analyzed and determined. Two hundred and eighty-nine patients with CHB were included. During the natural history of CHB, TCMS patterns were statistically different among the different phases (P < 0.001). The most frequently occurring syndromes among the six progressive phases were SKD, LGDH, LKD, LGDH, BSBC, and LGDH, respectively. The predominant patterns in the inactive stage (ITP + LRP), active stage (ICP + RAP), and late or advanced stage (HC + PLC) were SKD (31%), LGDH (51.8%) and BSBC (34.4%), respectively. Median HBsAg levels were also statistically different among the five patterns of TCMS (P < 0.001). The highest HBsAg levels were observed in SKD (4.48 log10 IU/mL). Medium levels were in LQD (3.91 log10 IU/mL) and LGDH (3.90 log10 IU/mL). The lowest HBsAg levels were in LKD (3.60 log10 IU/mL) and the second lowest levels in BSBC (3.81 log10 IU/mL). In addition, HBsAg levels in LKD and BSBC were significantly lower than those in SKD, LQD, and LGDH (P < 0.05 or 0.001). TCMS was altered during the natural history of CHB and correlated with HBsAg titers. This study could provide further insight into the therapy of CHB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.