Earthquake early warning (EEW) is a relatively new strategy for reducing disaster risk and increasing resilience to seismic hazard in urban settings. EEW systems provide real-time information about ongoing earthquakes, enabling individuals, communities, governments, businesses and others located at distance to take timely action to reduce the probability of harm or loss before the earthquake-induced ground shaking reaches them. Examples of potential losses mitigated by EEW systems include injuries and infrastructure
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Every year, natural hazards affect millions of people around the world, causing significant economic and life losses. The rapid progress of technology and advances in understanding of the highly complex physical phenomena related to various natural hazards have promoted the development of new disaster-mitigation tools, such as earthquake early warning (EEW) systems. However, there is a general lack of integration between the multi-and crossdisciplinary elements of EEW, limiting its effectiveness and applications for end users. This paper reviews the current state-of-the-art in EEW, exploring both the technical components (i.e., seismological and engineering) as well as the socio-organizational components (i.e., social science, policy, and management) of EEW systems. This includes a discussion of specific evidence from case studies of Italy, United States' West Coast, Japan, and Mexico, where EEW systems have reached varying levels of maturity. Our aim is to highlight necessary improvements for increasing the effectiveness of the technical aspects of EEW in terms of their implications on operational, political/legal, social, behavioral, and organizational drivers. Our analysis suggests open areas for research, associated with: 1) the information that needs to be included in EEW alerts to implement successful mitigation actions at both individual and organizational levels; 2) the need for response training to the community by official bodies, such as civil protection; 3) existing gaps in the attribution of accountability and development of liability policies involving EEW implementation; 4) the potential for EEW to increase seismic resilience of critical infrastructure and lifelines; 5) the need for strong organizational links with first responders and official EEW bodies; and 6) the lack of engineering-related (i.e., risk and resilience) metrics currently used to support decision making related to the triggering of alerts by various end users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.