It has been recently shown that mammalian spermatozoa were hyperactivated by steroids, amines and amino acids. In the present study, we investigated whether hyperactivation of hamster sperm is regulated by progesterone (P) and γ-aminobutyric acid (GABA). Although sperm hyperactivation was enhanced by P, GABA significantly suppressed P-enhanced hyperactivation in a dose-dependent manner. Suppression of P-enhanced hyperactivation by GABA was significantly inhibited by an antagonist of the GABAA receptor (bicuculline). Moreover, P bound to the sperm head, and this binding was decreased by GABA. Because the concentrations of GABA and P change in association with the estrous cycle, these results suggest that GABA and P competitively regulate the enhancement of hyperactivation through the GABAA receptor.
During capacitation, motility of mammalian spermatozoon is changed from a state of "activation" to "hyperactivation." Recently, it has been suggested that some hormones present in the oviduct are involved in the regulation of this hyperactivation in vitro. Progesterone, melatonin, and serotonin enhance hyperactivation through specific membrane receptors, and 17β-estradiol suppresses this enhancement by progesterone and melatonin via a membrane estrogen receptor. Moreover, γ-aminobutyric acid suppresses progesterone-enhanced hyperactivation through the γ-aminobutyric acid receptor. These hormones dose-dependently affect hyperactivation. Although the complete signaling pathway is not clear, progesterone activates phospholipase C and protein kinases and enhances tyrosine phosphorylation. Moreover, tyrosine phosphorylation is suppressed by 17β-estradiol. This regulation of spermatozoal hyperactivation by steroids is also disrupted by diethylstilbestrol. The in vitro experiments reviewed here suggest that mammalian spermatozoa are able to respond to effects of oviductal hormones. We therefore assume that the enhancement of spermatozoal hyperactivation is also regulated by oviductal hormones in vivo.
Many studies have been conducted to elucidate the relationship between energy metabolic pathways (glycolysis and respiration) and flagellar motility in mammalian sperm, but the contribution of glycolysis to sperm motility has not yet been fully elucidated. In the present study, we performed detailed analysis of mouse sperm flagellar motility for further understanding of the contribution of glycolysis to mammalian sperm motility. Mouse sperm maintained vigorous motility in the presence of substrates either for glycolysis or for respiration. By contrast, inhibition of glycolysis by alphachlorohydrine caused a significant decrease in the bend angle of the flagellar bending wave, sliding velocity of outer doublet microtubules and ATP content even in the presence of respiratory substrates (pyruvate or β-hydroxybutyrate). The decrease of flagellar bend angle and sliding velocity are prominent in the distal part of the flagellum, indicating that glycolysis inhibition caused the decrease in ATP concentration threrein. These results suggest that glycolysis potentially acts as a spatial ATP buffering system, transferring energy (ATP) synthesized by respiration at the mitochondria located in the basal part of the flagellum to the distal part. In order to validate that glycolytic enzymes can transfer high energy phosphoryls, we calculated intraflagellar concentration profiles of adenine nucleotides along the flagellum by computer simulation analysis. The result demonstrated the involvement of glycolysis for maintaining the ATP concentration at the tip of the flagellum. It is likely that glycolysis plays a key role in energy homeostasis in mouse sperm not only through ATP production but also through energy transfer.
Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE2) and γ-aminobutyric acid (GABA). Although it has been indicated that melatonin also enhances hyperactivation, it is unknown whether melatonin-enhanced hyperactivation is also suppressed by 17βE2 and GABA. In the present study, melatonin-enhanced hyperactivation was significantly suppressed by 17βE2 but not by GABA. Moreover, suppression of melatonin-enhanced hyperactivation by 17βE2 occurred through non-genomic regulation via the estrogen receptor (ER). These results suggest that enhancement of hyperactivation is regulated by melatonin and 17βE2 through non-genomic regulation.
Hayashi et al., 1987;Inaba et al., 1998). However, Morita and colleagues (Morita el al., 2005) reported that treatment of sperm with a 10% glycerol solution, before subsequent dilution into a low-osmotic solution, induced the , using fluo-4, revealed that intracellular Ca 2+ increased when sperm were suspended in hypertonic solutions, and a subsequent dilution into a hypotonic solution led to a decrease in intracellular Ca 2+ concomitant with motility initiation. In addition, upon dilution of sperm into a hypertonic glycerol solution prior to demembranation, the motility of demembranated sperm was reactivated in the absence of cAMP. The motility recovery suggests that completion of axonemal maturation occurred during exposure to a hypertonic environment. As a result, it is likely that glycerol treatment of sperm undergoing hypertonic shock causes mobilization of intracellular Ca 2+ from the intracellular Ca 2+ store and also causes maturation of axonemal proteins for motility initiation. The subsequent dilution into a hypotonic solution induces a decrease in intracellular Ca 2+ and flagellar movement. This novel mechanism of sperm motility initiation seems to act in a salvaging manner for the well-known K + -dependent pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.