Glutathione peroxidase catalyzes the reduction of hydrogen peroxide and organic hydroperoxide by glutathione and functions in the protection of cells against oxidative damage. Glutathione peroxidase exists in several forms that differ in their primary structure and localization. We have also shown that selenoprotein P exhibits a glutathione peroxidase-like activity (Saito, Y., Hayashi, T., Tanaka, A., Watanabe, Y., Suzuki, M., Saito, E., and Takahashi, K. (1999) J. Biol. Chem. 274, 2866 -2871). To understand the physiological significance of the diversity among these enzymes, a comparative study on the peroxide substrate specificity of three types of ubiquitous glutathione peroxidase (cellular glutathione peroxidase, phospholipid hydroperoxide glutathione peroxidase, and extracellular glutathione peroxidase) and of selenoprotein P purified from human origins was done. The specific activities and kinetic parameters against two hydroperoxides (hydrogen peroxide and phosphatidylcholine hydroperoxide) were determined. We next examined the thiol specificity and found that thioredoxin is the preferred electron donor for selenoprotein P. These four enzymes exhibit different peroxide and thiol specificities and collaborate to protect biological molecules from oxidative stress both inside and outside the cells.
Human selenoprotein P (SeP), a selenium-rich plasma glycoprotein, is presumed to contain ten selenocysteine residues; one of which is located at the 40th residue in the N-terminal region and the remaining nine localized in the C-terminal third part. We have shown that SeP not only catalyses the reduction of phosphatidylcholine hydroperoxide by glutathione [Saito, Hayashi, Tanaka, Watanabe, Suzuki, Saito and Takahashi (1999) J. Biol. Chem. 274, 2866-2871], but also supplies its selenium to proliferating cells [Saito and Takahashi (2002) Eur. J. Biochem. 269, 5746-5751]. Treatment of SeP with plasma kallikrein resulted in a sequential limited proteolysis (Arg-235-Gln-236 and Arg-242-Asp-243). The N-terminal (residues 1-235) and C-terminal (residues 243-361) fragments exhibited enzyme activity and selenium-supply activity respectively. These results confirm that SeP is a bi-functional protein and suggest that the first selenocysteine residue is the active site of the enzyme and the remaining nine residues function as a selenium supplier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.