The Keap1-Nrf2 system is the major regulatory pathway of cytoprotective gene expression against oxidative and/or electrophilic stresses. Keap1 acts as a stress sensor protein in this system. While Keap1 constitutively suppresses Nrf2 activity under unstressed conditions, oxidants or electrophiles provoke the repression of Keap1 activity, inducing the Nrf2 activation. However, the precise molecular mechanisms behind the liberation of Nrf2 from Keap1 repression in the presence of stress remain to be elucidated. We hypothesized that oxidative and electrophilic stresses induce the nuclear accumulation of Nrf2 by affecting the Keap1-mediated rapid turnover of Nrf2, since such accumulation was diminished by the protein synthesis inhibitor cycloheximide. While both the Cys273 and Cys288 residues of Keap1 are required for suppressing Nrf2 nuclear accumulation, treatment of cells with electrophiles or mutation of these cysteine residues to alanine did not affect the association of Keap1 with Nrf2 either in vivo or in vitro. Rather, these treatments impaired the Keap1-mediated proteasomal degradation of Nrf2. These results support the contention that Nrf2 protein synthesized de novo after exposure to stress accumulates in the nucleus by bypassing the Keap1 gate and that the sensory mechanism of oxidative and electrophilic stresses is closely linked to the degradation mechanism of Nrf2.
Acrolein (CH 2 ACHOCHO) is known as a ubiquitous pollutant in the environment. Here we show that this notorious aldehyde is not just a pollutant, but also a lipid peroxidation product that could be ubiquitously generated in biological systems. Upon incubation with BSA, acrolein was rapidly incorporated into the protein and generated the protein-linked carbonyl derivative, a putative marker of oxidatively modified proteins under oxidative stress. To verify the presence of protein-bound acrolein in vivo, the mAb (mAb5F6) against the acrolein-modified keyhole limpet hemocyanin was raised. It was found that the acrolein-lysine adduct, N -(3-formyl-3,4-dehydropiperidino)lysine, constitutes an epitope of the antibody. Immunohistochemical analysis of atherosclerotic lesions from a human aorta demonstrated that antigenic materials recognized by mAb5F6 indeed constituted the lesions, in which intense positivity was associated primarily with macrophage-derived foam cells and the thickening neointima of arterial walls. The observations that (i) oxidative modification of low-density lipoprotein with Cu 2؉ generated the acrolein-low-density lipoprotein adducts and (ii) the ironcatalyzed oxidation of arachidonate in the presence of protein resulted in the formation of antigenic materials suggested that polyunsaturated fatty acids are sources of acrolein that cause the production of protein-bound acrolein. These data suggest that the protein-bound acrolein represents potential markers of oxidative stress and long-term damage to protein in aging, atherosclerosis, and diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.